Food Rewards (food + reward)

Distribution by Scientific Domains


Selected Abstracts


Effects of MPEP on expression of food-, MDMA- or amphetamine-conditioned place preference in rats

ADDICTION BIOLOGY, Issue 3 2005
Volker Herzig
Recent studies have revealed the effectiveness of 2-methyl-6-(phenylethynyl)pyridine (MPEP), a highly selective antagonist of metabotropic glutamate receptors subtype 5 (mGluR5), in conditioned drug reward. In a previous study we showed that MPEP blocks expression of context-conditioned morphine- but not cocaine reward in the rat. The present study now examines the effectiveness of MPEP in the expression of context-conditioned food, MDMA (,ecstasy?) or amphetamine reward. Therefore, three groups of rats were conditioned either to food, MDMA or amphetamine in the conditioned place preference (CPP) paradigm. After conditioning, CPP expression and locomotion were determined simultaneously in the presence and absence of the respective reward (i.e. food or drug), or after application of 50?mg/kg MPEP (the dose that was most effective in reducing morphine CPP expression in our previous study). As a result, MPEP reduced locomotion in all groups. Furthermore, only expression of amphetamine CPP was inhibited by MPEP, while expression of food and MDMA CPP was not affected, suggesting that the MPEP-induced inhibition of amphetamine CPP expression was not causally linked to the reduction of locomotion. Overall, we conclude that MPEP reduces expression of context-conditioned amphetamine but not MDMA or food reward. [source]


Distinct contributions of the amygdala and hippocampus to fear expression

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2009
Yogita Chudasama
Abstract The present study attempted to distinguish the independent contributions of the amygdala and hippocampus to fear expression. Rhesus monkeys (Macaca mulatta) with bilateral excitotoxic amygdala lesions (n = 4), bilateral excitotoxic hippocampal lesions (n = 8) and unoperated controls (n = 9) were allowed to reach over a neutral junk object or fear-provoking stimulus (i.e., a rubber snake or a jumping rubber spider) to retrieve a food reward. Monkeys were exposed to each stimulus for 30 s. On each trial we recorded the monkey's latency to retrieve the food reward and scored their whole-body reactions to the object. Confirming previous work we found that, relative to controls, both operated groups showed shorter food-retrieval latencies and exhibited fewer defensive and more approach behaviors when exposed to the fear-provoking stimuli. However, only monkeys with amygdala lesions showed an abnormal, excessive visual interest in the snake and spider. By contrast, monkeys with hippocampal lesions displayed behaviors that were unrelated to the presence of the fear stimuli, thereby indicating a lack of interest in, and emotional reactivity towards, the snake and spider. These data show that the hippocampus and amygdala contribute independently to the overall expression of defensive responses. [source]


Entorhinal cortex contributes to object-in-place scene memory

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2004
David P. Charles
Abstract Four rhesus monkeys (Macaca mulatta) were trained preoperatively in a test of object-in-place scene memory. They were presented daily with lists of unique computer-generated scenes each containing a spatial array of multiple individual objects. Within each scene, objects to be discriminated appeared in the foreground, each occupying a unique location, and monkeys were required to correctly discriminate the rewarded object to receive a food reward. Once this preoperative criterion was attained, the monkeys received bilateral entorhinal cortex ablation performed as either one or two surgical operations with a period of testing following each. Postoperatively, they were significantly impaired in learning new object-in-place scene problems. These results show that the entorhinal cortex, like anatomically related structures including the perirhinal cortex and the fornix, contributes to object-in-place scene learning. [source]


Regional differences in hippocampal PKA immunoreactivity after training and reversal training in a spatial Y-maze task

HIPPOCAMPUS, Issue 5 2007
Robbert Havekes
Abstract It is suggested that the hippocampus functions as a comparator by making a comparison between the internal representation and actual sensory information from the environment (for instance, comparing a previously learned location of a food reward with an actual novel location of a food reward in a Y-maze). However, it remains unclear to what extent the various hippocampal regions contribute to this comparator function. One of the proteins known to be crucially involved in the formation of hippocampus-dependent long-term memory is the adenosine 3,,5, cyclic monophosphate dependent protein kinase (PKA). Here, we examined region-specific changes in immunoreactivity (ir) of the regulatory II,,, subunits of PKA (PKA RII,,,-ir) in the hippocampus during various stages of spatial learning in a Y-maze reference task. Thereafter, we compared changes in hippocampal PKA RII,,,-ir induced by training and reversal training in which the food reward was relocated to the previously unrewarded arm. We show that: (1) There was a clear correlation between behavioral performance and elevated PKA RII,,,-ir during the acquisition phase of both training and reversal training in area CA3 and dentate gyrus (DG), (2) PKA RII,,,-ir was similarly enhanced in area CA1 during the acquisition phase of reversal training, but did not correlate with behavioral performance, (3) PKA RII,,,-ir did not change during training or reversal training in the subiculum (SUB), (4) No changes in PKA RII,,, protein levels were found using Western blotting, and (5) AMPA receptor phosphorylation at serine 845 (S845p; the PKA site on the glutamate receptor 1 subunit (GluR1)), was enhanced selectively during the acquisition phase of reversal training. These findings reveal that training and reversal training induce region-specific changes in hippocampal PKA RII,,,-ir and suggest a differential involvement of hippocampal subregions in match-mismatch detection in case of Y-maze reference learning. Alterations in AMPA receptor regulation at the S845 site seems specifically related to the novelty detector function of the hippocampus important for match-mismatch detection. © 2007 Wiley-Liss, Inc. [source]


Brain regulation of food intake and appetite: molecules and networks

JOURNAL OF INTERNAL MEDICINE, Issue 4 2005
C. BROBERGER
Abstract. In the clinic, obesity and anorexia constitute prevalent problems whose manifestations are encountered in virtually every field of medicine. However, as the command centre for regulating food intake and energy metabolism is located in the brain, the basic neuroscientist sees in the same disorders malfunctions of a model network for how integration of diverse sensory inputs leads to a coordinated behavioural, endocrine and autonomic response. The two approaches are not mutually exclusive; rather, much can be gained by combining both perspectives to understand the pathophysiology of over- and underweight. The present review summarizes recent advances in this field including the characterization of peripheral metabolic signals to the brain such as leptin, insulin, peptide YY, ghrelin and lipid mediators as well as the vagus nerve; signalling of the metabolic sensors in the brainstem and hypothalamus via, e.g. neuropeptide Y and melanocortin peptides; integration and coordination of brain-mediated responses to nutritional challenges; the organization of food intake in simple model organisms; the mechanisms underlying food reward and processing of the sensory and metabolic properties of food in the cerebral cortex; and the development of the central metabolic system, as well as its pathological regulation in cancer and infections. Finally, recent findings on the genetics of human obesity are summarized, as well as the potential for novel treatments of body weight disorders. [source]


Localized lesions of arcopallium intermedium of the lateral forebrain caused a handling-cost aversion in the domestic chick performing a binary choice task

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2006
Naoya Aoki
Abstract Behavioral effects of handling cost (time and/or energetic cost for food consumption) on choice were examined using domestic chicks trained in operant task reinforced by delayed food rewards. When scattered sesame was delivered in more demanding conditions, a colored cue bead associated with six grains (,large' and ,costly' reward) was chosen progressively less frequently against another bead associated with one grain (,small' and ,not costly' reward). The choice thus proved to be highly sensitive to the anticipated handling cost. Excitotoxic lesion of the bilateral arcopallium intermedium also selectively reduced the choice of the six grains, while leaving actual cost investment (number of pecks and handling time) unaltered. No significant changes occurred in choices between one grain of sesame (,small' and ,not costly' reward) and one grain of barley (or a ball composed of six sesame grains glued by starch; ,large' and ,not costly' reward), indicating that choice based on anticipated food amount was not impaired. On the other hand, lesion of the ventral striatum did not change the choice ratio in any trial types. Operant peck latencies somewhat depended on food rewards, but were not affected by lesions of the arcopallium or the ventral striatum. The arcopallium could contribute to foraging behaviors by enabling chicks to overcome the handling cost, thus gaining more beneficial food. Furthermore, the present results indicate doubly dissociated functional roles of the ventral striatum and the arcopallium, the former in the cost of traveling for food and the latter in the cost of handling food, respectively. [source]


Dual ant attraction in the Neotropical shrub Urera baccifera (Urticaceae): the role of ant visitation to pearl bodies and fruits in herbivore deterrence and leaf longevity

FUNCTIONAL ECOLOGY, Issue 2 2006
H. P. DUTRA
Summary 1This study investigated the protective role of ants against phytophagous insects on Urera baccifera (L.) Gaudich. Ants (22 species) visit shrubs of U. baccifera throughout the year and forage especially on leaves, where they harvest pearl bodies, and on fruiting branches, where they collect fleshy fruits. The main leaf herbivores are the butterflies Smyrna blomfildia (Fruhstorfer) and Urbanus esmeraldus (Butler), and the moth Pleuroptya silicalis (Guené). 2The proportion of vegetative (no flowers or fruits) individuals of U. baccifera occupied by ants greatly surpassed that of neighbouring plant species lacking food rewards, consistent with the hypothesis that pearl bodies act as ant attractants. Ant visitation to vegetative individuals of U. baccifera increased larval mortality of S. blomfildia, suggesting that ants attracted to pearl bodies reduce herbivore survival. Fruits were also demonstrated to play an important role in ant attraction by U. baccifera. Ant visitation to pearl body-producing shrubs of non-myrmecophytic Piper amalago L. with U. baccifera fruits attached was significantly higher than to P. amalago plants with an attached leaf of U. baccifera. 3Ant-exclusion experiments showed that ants effectively reduce the incidence of lepidopteran larvae on the plants. In both 2003 and 2004, herbivores were more abundant on ant-excluded than on ant-visited shrubs of U. baccifera. Additionally, in both years ant-excluded plants had significantly faster leaf abscission rates compared with ant-visited plants. 4So far, all ant,plant systems with dual food rewards involve extrafloral nectar as one of the attractants. This study with U. baccifera is the first to report food bodies and fruits as ant attractants in a non-symbiotic ant,plant interaction. This facultative system is also unique in that herbivore deterrence caused by pearl body- and fruit-harvesting ants can also add to leaf longevity. [source]


Use of experimenter-given directional cues by a young white-handed gibbon (Hylobates lar)1

JAPANESE PSYCHOLOGICAL RESEARCH, Issue 3 2004
YOICHI INOUE
Abstract:, A three-year-old white-handed gibbon (Hylobates lar) was tested in terms of her ability to follow experimenter-given directional cues in an object-choice task. Four conditions were run: the experimenter baited one of two cups and then gave one of the following four directional cues: (a) pointing at the baited cup from a short distance (5 cm); (b) pointing at the target from a long distance (20 cm); (c) orienting body, head, and eyes toward the baited cup; and (d) orienting eyes only toward the baited cup. A young gibbon was able to use all of the experimenter-given cues to obtain hidden food rewards. Several possible reasons for the gibbon's superior performance in comparison to other primates reported in the existing literature were discussed. [source]


Towards development of a nonhuman primate model of carpal tunnel syndrome: Performance of a voluntary, repetitive pinching task induces median mononeuropathy in Macaca fascicularis

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2007
Carolyn M. Sommerich
Abstract This study investigated changes in median sensory nerve conduction velocity (SNCV) over several weeks of exposure to a voluntary, moderately forceful, repetitive pinching task performed for food rewards by a small sample of young adult female monkeys (Macaca fascicularis). SNCV, derived from peak latency, decreased significantly in the working hands of three of the four subjects. The overall decline in NCV was 25%,31% from baseline. There was no decrease in SNCV in the contralateral, nonworking hands. Several weeks after being removed from the task, SNCV returned to within 87%,100% of baseline. MRI showed enlargement of the affected nerves near the proximal end of the carpal tunnel, at the time of maximal SNCV slowing. This new animal model demonstrates a temporally unambiguous relationship between exposure to a moderately forceful, repetitive manual task and development of median mononeuropathy at the wrist, and recovery of SNCV following termination of task exposure. This study contributes to the pattern of evidence of a causal relationship between manual work, median mononeuropathy, and carpal tunnel syndrome in humans. In the future, this new animal model could be used to characterize dose,response relationships between risk factors and carpal tunnel syndrome. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25: 713,724, 2007 [source]


Binge Pattern Ethanol Exposure in Adolescent and Adult Rats: Differential Impact on Subsequent Responsiveness to Ethanol

ALCOHOLISM, Issue 8 2000
Aaron M. White
Background: Recent evidence indicates that adolescent animals are more sensitive than adults to the disruptive effects of acute ethanol exposure on spatial learning. It is not yet known whether adolescent animals are also more sensitive than adults to the enduring neurobehavioral effects of repeated ethanol exposure. In this study, animals were exposed to ethanol in a binge-pattern during either adolescence or adulthood. At a time when all subjects were adults, spatial working memory was examined in the absence and presence of an acute ethanol challenge. Methods: Rats were exposed to ethanol (5.0 g/kg intraperitoneally) or isovolumetric saline at 48 hr intervals over 20 days. Exposure began on either postnatal day 30 (adolescent group) or 70 (adult group). Twenty days after the final injection, a time at which all animals were adults, the subjects were tested on an elevated plus maze and then were trained to perform a spatial working memory task on an eight-arm radial maze. At the beginning of each session of training on the working memory task, subjects retrieved food rewards on four of the eight arms. After a delay, subjects were placed on the maze and allowed to retrieve food from the remaining four arms. Results: Prior exposure to ethanol did not influence behavior on the plus maze. Performance of the groups did not differ during acquisition of the spatial working memory task with a 5 min delay or during subsequent testing with a 1 hr delay. However, animals treated with ethanol during adolescence exhibited larger working memory impairments during an ethanol challenge (1.5 g/kg intraperitoneally) than subjects in the other three groups. Conclusions: The findings indicate that binge pattern exposure to ethanol during adolescence enhances responsiveness to the memory-impairing effects of ethanol in adulthood. [source]


Speciation in the Orchidaceae: confronting the challenges

MOLECULAR ECOLOGY, Issue 14 2007
ROD PEAKALL
The Orchidaceae is renowned for its large number of species (19 500) and its many diverse, even bizarre, specialized pollination systems. One unusual feature of orchids is the high frequency of food deception whereby animal pollination is achieved without providing nectar, pollen or other food rewards. Food-deceptive pollination is estimated to occur in approximately one-third of all orchids. Equally intriguing is pollination by sexual deception whereby pollination is achieved by the sexual attraction of male insects to the orchid flower. Sexual deception is found in several hundred species representing multiple lineages. Given their rich species diversity and extraordinary plant,animal interactions, orchids clearly offer exciting research opportunities in pollination biology, reproductive isolation and speciation, yet surprisingly they remain under-represented in scientific investigations both in these fields and more generally. In this special issue of Molecular Ecology, Moccia et al. provide an exemplar study that combine multiple lines of evidence to illuminate the mechanism of reproductive isolation between two closely related food-deceptive orchids. Their study demonstrates that many of the challenges that confront orchid researchers and impede progress in our understanding of speciation in the Orchidaceae can be overcome by the creative application and integration of both old and new tools in ecology and genetics. [source]


Captive cotton-top tamarins' (Saguinus oedipus oedipus) use of landmarks to localize hidden food items

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 4 2009
Francine L. Dolins
Abstract Seventeen captive cotton-top tamarins (Saguinus oedipus oedipus) were individually tested on their use of spatial relationships between landmarks to locate multiple hidden food items. In two experiments, the tamarins were presented with a spatial-foraging task in which positions of hidden food rewards were fixed in relation to an array of visual cues. In Experiment 1, the cues+hidden food configuration was rotated 90° and the tamarins were successful in locating the food items significantly above chance levels (P<0.01). In Experiment 2 the cues+hidden food configuration was translated (up, down or sideways) from the previously learned configuration, and the monkeys successfully localized the hidden food items (P<0.001). Results indicate that the tamarins relied on the spatial relationship between the multiple landmarks to locate hidden food items rather than on an associative or beacon strategy. The results of these experiments support the contention that when contextually appropriate these captive New World monkeys have the capacity to rely on the spatial relationship or positions of several cues as an array to localize points in their environment. Am. J. Primatol. 71:316,323, 2009. © 2009 Wiley-Liss, Inc. [source]