Fluid Dynamics Study (fluid + dynamics_study)

Distribution by Scientific Domains

Kinds of Fluid Dynamics Study

  • computational fluid dynamics study


  • Selected Abstracts


    The Impact of Aortic/Subclavian Outflow Cannulation for Cardiopulmonary Bypass and Cardiac Support: A Computational Fluid Dynamics Study

    ARTIFICIAL ORGANS, Issue 9 2009
    Tim A.S. Kaufmann
    Abstract Approximately 100 000 cases of oxygen deficiency in the brain occur during cardiopulmonary bypass (CPB) procedures each year. In particular, perfusion of the carotid and vertebral arteries is affected. The position of the outflow cannula influences the blood flow to the cardiovascular system and thus end organ perfusion. Traditionally, the cannula returns blood into the ascending aorta. But some surgeons prefer cannulation to the right subclavian artery. A computational fluid dynamics study was initially undertaken for both approaches. The vessel model was created from real computed tomography/magnetic resonance imaging data of young healthy patients. The simulations were run with usual CPB conditions. The flow distribution for different cannula positions in the aorta was studied, as well as the impact of the cannula tip distance to vertebral artery for the subclavian position. The study presents a fast method of analyzing the flow distribution in the cardiovascular system, and can be adapted for other applications such as ventricular assist device support. It revealed that two effects cause the loss of perfusion seen clinically: a vortex under the brachiocephalic trunk and low pressure regions near the cannula jet. The results suggest that cannulation to the subclavian artery is preferred if the cannula tip is sufficiently far away from the branch of the vertebral artery. For the aortic positions, however, the cannula should be injected from the left body side. [source]


    Characterization of Taylor vortex flow in a short liquid column

    AICHE JOURNAL, Issue 12 2009
    Rensheng Deng
    Abstract We present a study on Taylor vortex flow in the annulus between a rotating inner cylinder and a stationary outer cylinder, featured with a wide gap (radius ratio is 0.613) and a short column (aspect ratio is 5.17). A particle image velocimetry (PIV) system was used to determine the position, shape, and velocity distribution of the vortices, by which the flow was also confirmed to lie in the nonwavy Taylor vortex regime for all operating conditions explored in this study. Our results suggest that end boundary effects are important, in which the vortex number decreases with decreasing column length. For a system with an aspect ratio of 5.17, six vortices appear in the gap with their position, size, and shape varying at different Reynolds numbers. The fluid velocities show an asymmetric feature with respect to the vortex centers, while the maximum axial and radial velocities increase almost linearly with the increasing reduced Reynolds number (Re , Rec). In addition, computational fluid dynamics study was employed under the same conditions, and its results agree well with the PIV measurements. Overall, this study provides a quantitative understanding of the formation of Taylor vortices in a constrained space. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


    The Impact of Aortic/Subclavian Outflow Cannulation for Cardiopulmonary Bypass and Cardiac Support: A Computational Fluid Dynamics Study

    ARTIFICIAL ORGANS, Issue 9 2009
    Tim A.S. Kaufmann
    Abstract Approximately 100 000 cases of oxygen deficiency in the brain occur during cardiopulmonary bypass (CPB) procedures each year. In particular, perfusion of the carotid and vertebral arteries is affected. The position of the outflow cannula influences the blood flow to the cardiovascular system and thus end organ perfusion. Traditionally, the cannula returns blood into the ascending aorta. But some surgeons prefer cannulation to the right subclavian artery. A computational fluid dynamics study was initially undertaken for both approaches. The vessel model was created from real computed tomography/magnetic resonance imaging data of young healthy patients. The simulations were run with usual CPB conditions. The flow distribution for different cannula positions in the aorta was studied, as well as the impact of the cannula tip distance to vertebral artery for the subclavian position. The study presents a fast method of analyzing the flow distribution in the cardiovascular system, and can be adapted for other applications such as ventricular assist device support. It revealed that two effects cause the loss of perfusion seen clinically: a vortex under the brachiocephalic trunk and low pressure regions near the cannula jet. The results suggest that cannulation to the subclavian artery is preferred if the cannula tip is sufficiently far away from the branch of the vertebral artery. For the aortic positions, however, the cannula should be injected from the left body side. [source]


    CFD study of mixing characteristics of bubble column and external loop airlift reactor

    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 2 2008
    S. Roy
    Abstract In the present work, a computational fluid dynamics study has been carried out to bring out the mixing characteristics of bubble column and external loop airlift reactor. A comparison of mixing time for two reactors has been presented on the basis of the same reactor volume as well as the total power input. The CFD model was validated by simulating flow, both in bubble column and external loop airlift reactor. An agreement was observed between the predicted and the experimental data available in the published literature. The validated CFD model has been extended for the simulation of the mixing time for both the reactors. The CFD predictions of mixing time show good agreement with the experimental values published in literature. A systematic numerical study was then carried out to bring out the mixing characteristics of both the reactors. Copyright © 2008 Curtin University of Technology and John Wiley & Sons, Ltd. [source]