Flow Speed (flow + speed)

Distribution by Scientific Domains


Selected Abstracts


Estimating the mean speed of laminar overland flow using dye injection-uncertainty on rough surfaces

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2001
David Dunkerley
Abstract A common method for estimating mean flow speeds in studies of surface runoff is to time the travel of a dye cloud across a measured flow path. Motion of the dye front reflects the surface flow speed, and a correction must be employed to derive a value for the profile mean speed, which is always lower. Whilst laminar flow conditions are widespread in the interrill zone, few data are available with which to establish the relationship linking surface and profile mean speeds, and there are virtually none for the flow range 100,<,Re,<,500 (Re,=,Reynolds number) which is studied here. In laboratory experiments on a glued sand board, mean flow speeds were estimated from both dye speeds and the volumetric flow relation v,=,Q/wd with d measured using a computer-controlled needle gauge at 64 points. In order to simulate conditions applicable to many dryland soils, the board was also roughened with plant litter and with ceramic tiles (to simulate surface stone cover). Results demonstrate that in the range 100,<,Re,<,500, there is no consistent relation between surface flow speeds and the profile mean. The mean relationship is v,=,0·56 vsurf, which departs significantly from the theoretical smooth-surface relation v,=,0·67 vsurf, and exhibits a considerable scatter of values that show a dependence on flow depth. Given the inapplicability of any fixed conversion factor, and the dependence on flow depth, it is suggested that the use of dye timing as a method for estimating v be abandoned in favour of precision depth measurement and the use of the relation v,=,Q/wd, at least within the laminar flow range tested. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Combined effects of discharge, turbidity, and pesticides on mayfly behavior: Experimental evaluation of spray-drift and runoff scenarios

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2005
James M. Dabrowski
Abstract The effects of the pyrethroid-insecticide cypermethrin (CYP), increased flow speed (Flow), and increased suspended particles (Part) on drift behavior and activity of mayfly nymphs (Baetis harrisoni) were investigated both individually and in combination in a laboratory stream microcosm. Spray-drift trials were performed by exposing the nymphs to 1 ,g/L of CYP. During runoff trials (CYP × Part), contaminated sediment containing 2,000 ,g/kg of CYP was introduced to the microcosm at a concentration of 500 mg/L. Both trials were carried out under high-flow (CYP × Flow and CYP × Part × Flow) and low-flow (CYP and CYP × Part) conditions, and for all cases, control experiments were performed. Drift rate, drift density (for any treatments with increased flow), and activity were used as behavioral endpoints. Multifactorial analysis of variance shows that CYP exposure significantly increased the drift, whereas Part and Flow trials significantly decreased the drift (p < 0.05). In addition, activity decreased significantly under high-flow conditions. The CYP × Part and CYP × Flow treatments resulted in increased drift rate and drift density, respectively, whereas Part × Flow and CYP × Part × Flow treatments resulted in decreased drift density. The CYP × Part and CYP × Flow trials had a significant antagonistic, interactive effect on drift rate and drift density, respectively, with measured levels being lower than expected levels. The reduction in bioavailability of CYP in the presence of increased flow and sediment levels suggests that mayflies are more likely to be affected by spray-drift exposure (CYP) than by runoff exposure (CYP × Part × Flow). Results indicate that mayflies reacted actively in response to flow conditions and passively in response to pesticide exposure. [source]


Simulations to Verify Horizontal Flow Measurements from a Borehole Flowmeter

GROUND WATER, Issue 3 2006
Scott C James
This paper reports on experiments and simulations of subsurface flow from a slotted acrylic tube deployed in a sand-tank flow chamber for two different purposes. In the first instance, the slotted tube is used to represent a single fracture intersected by an uncased well. In the second instance, the slotted tube is used to represent a multislot well screen within a porous medium. In both cases, the scanning colloidal borescope flowmeter (SCBFM) measures ground water velocity within the well by imaging colloids traveling through a well to measure their speed and direction. Measurements are compared against model simulations. For the case of a slotted tube representing a single fracture, SCBFM and model results agree with respect to the flow direction and to within a factor of 1.5 for the speed near the well's center. Model and experimental agreement lend confidence that for an uncased well drilled in a fractured-rock medium, a calibrated SCBFM could be used to identify and quantify flowing features. Next, the SCBFM was deployed in a four-column multislotted casing with slots aligned with the flow direction. Another numerical model was developed to estimate the flow field within this well screen to evaluate the potential usefulness of employing the SCBFM in a screened well to estimate flow speed and direction in the surrounding porous medium. Results indicate that if the slots are not aligned with the flow, the SCBFM may only provide order-of-magnitude speed measurements and direction measurements with an uncertainty of approximately ±25°. [source]


Acoustic upwinding for sub- and super-sonic turbulent channel flow at low Reynolds number

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 3 2007
H. C. de LangeArticle first published online: 13 FEB 200
Abstract A recently developed asymmetric implicit fifth-order scheme with acoustic upwinding for the spatial discretization for the characteristic waves is applied to the fully compressible, viscous and non-stationary Navier,Stokes equations for sub- and super-sonic, mildly turbulent, channel flow (Re,=360). For a Mach number of 0.1, results are presented for uniform (323, 643 and 1283) and non-uniform (expanding wall-normal, 323 and 643) grids and compared to the (incompressible) reference solution found in (J. Fluid. Mech. 1987; 177:133,166). The results for uniform grids on 1283 and 643 nodes show high resemblance with the reference solution. Expanding grids are applied on 643 - and 323 -node grids. The capability of the proposed technique to solve compressible flow is first demonstrated by increasing the Mach number to 0.3, 0.6 and 0.9 for isentropic flow on the uniform 643 -grid. Next, the flow speed is increased to Ma=2. The results for the isothermal-wall supersonic flows give very good agreement with known literature results. The velocity field, the temperature and their fluctuations are well resolved. This means that in all presented (sub- and super-sonic) cases, the combination of acoustic upwinding and the asymmetric high-order scheme provides sufficient high wave-number damping and low wave-number accuracy to give numerically stable and accurate results. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Living on the bottom: Kinematics of benthic station-holding in darter fishes (Percidae: Etheostomatinae)

JOURNAL OF MORPHOLOGY, Issue 1 2010
Rose L. Carlson
Abstract Darters represent a substantial radiation of freshwater fishes that live in close association with the substrate in North American streams and rivers. A key feature of any darter species is therefore its ability to stay in place or to "hold station" in flowing water. Here, we quantify the station-holding performance of two morphologically divergent darter species, the fantail darter Etheostoma flabellare and the Missouri saddled darter Etheostoma tetrazonum. We also characterize the primary kinematic responses of the two species when holding station in flow speeds ranging from 4 to 56 cm s,1 in a flow tank on either plexiglas or small rock substrate. We then present a series of hypotheses about the potential hydrodynamic and functional consequences of the observed postural changes and the links among morphology, posture, and station-holding performance. On both substrates, E. tetrazonum was able to hold station at higher flow speeds than E. flabellare. On rocks, E. tetrazonum slipped at an average speed of 55.7 cm s,1 whereas E. flabellare slipped at 40.2 cm s,1. On plexiglas, E. tetrazonum slipped at an average speed of 24.7 cm s,1 whereas E. flabellare slipped at 23.1 cm s,1. We measured body and fin positions of the two species from individual frames of high-speed video while holding station on rocks and plexiglas. We found that on both substrates, the two species generally exhibited similar kinematic responses to increasing flow: the head was lowered and angled downward, the back became more arched, and the median and caudal fin rays contracted as water flow speed increased. The ventral halves of the pectoral fins were also expanded and the dorsal halves contracted. These changes in posture and fin position likely increase negative lift forces thereby increasing substrate contact forces and reducing the probability of downstream slip. J. Morphol., 2010. © 2009 Wiley-Liss, Inc. [source]


Two-phase flow electrosynthesis: Comparing N -octyl-2-pyrrolidone,aqueous and acetonitrile,aqueous three-phase boundary reactions

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 1 2009
Stuart M. MacDonald
Abstract A microfluidic double channel device is employed to study reactions at flowing liquid,liquid junctions in contact with a boron-doped diamond (BDD) working electrode. The rectangular flow cell is calibrated for both single-phase liquid flow and biphasic liquid,liquid flow for the case of (i) the immiscible N -octyl-2-pyrrolidone (NOP),aqueous electrolyte system and (ii) the immiscible acetonitrile,aqueous electrolyte system. The influence of flow speed and liquid viscosity on the position of the phase boundary and mass transport-controlled limiting currents are examined. In contrast to the NOP,aqueous electrolyte case, the acetonitrile,aqueous electrolyte system is shown to behave close to ideal without ,undercutting' of the organic phase under the aqueous phase. The limiting current for three-phase boundary reactions is only weakly dependent on flow rate but directly proportional to the concentration and the diffusion coefficient in the organic phase. Acetonitrile as a commonly employed synthetic solvent is shown here to allow effective three-phase boundary processes to occur due to a lower viscosity enabling faster diffusion. N -butylferrocene is shown to be oxidised at the acetonitrile,aqueous electrolyte interface about 12 times faster when compared with the same process at the NOP,aqueous electrolyte interface. Conditions suitable for clean two-phase electrosynthetic processes without intentionally added supporting electrolyte in the organic phase are proposed. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Zum Korrosionsverhalten von Nicrofer 3033 in hochkonzentrierter Schwefelsäure

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 12 2002
H. Werner
Untersuchungen zum Korrosionsverhalten von Nicrofer 3033 (1.4591) erfolgten in 93%iger und 95,99%iger technischer Schwefelsäure bei Temperaturen von 70,200°C. 6-h-Versuche mit gravimetrischer Auswertung und Messung des Freien Korrosionspotentials und 48-h-Versuche mit gravimetrischer Auswertung dienten zur Ermittlung des Einflusses von Schwefelsäurekonzentration und Temperatur bei An- und Abwesenheit von SO2 auf die Beständigkeit von Blechproben. Der Einfluss der Strömungsgeschwindigkeit wurde in 6-h-Versuchen durch Rotation von Rohrproben bei Umfangsgeschwindigkeiten bis 2 m/s untersucht. Aus den Potential- und gravimetrischen Messungen folgt für Temperaturen ab 100°C eine Beständigkeit mit , 0,1 mm/a für Nicrofer 3033 (1.4591) ab etwa 98,5%. Um 125°C scheint jedoch ein Gebiet zu existieren, wo zumindest bei längerer Versuchsdauer die Beständigkeit bis herab zu etwa 97,5% erhalten bleibt. Untersuchungen zum Strömungseinfluss weisen darauf hin, dass in dem genannten Gebiet mit zunehmender Strömungsgeschwindigkeit wieder eine Aktivierung erfolgt. Bei den anderen Temperaturen ist dagegen der Strömungseinfluss gering. Diese Ausweitung des Beständigkeitsbereiches um 125°C belegt, dass die Temperaturabhängigkeit von Nicrofer 3033 (1.4591) in hochkonzentrierter Schwefelsäure nicht monoton ist. Es treten in Abhängigkeit von der Schwefelsäurekonzentration bei unterschiedlichen Temperaturen Korrosionsmaxima und -minima auf. Bei Anwesenheit von SO2 erfolgt nur bei niedrigen Versuchstemperaturen, 80°C, 100°C im 6-h-Versuch und 70°C, 80°C im 48-h-Versuch, eine Einengung des Beständigkeitsbereiches. Contribution to corrosion behaviour of Alloy 33 in high concentrated sulfuric acid Investigations on the corrosive behaviour of Alloy 33 were conducted in 93% and 95,99% technical sulfuric acid at temperatures of 70,200°C. 6-h-tests with gravimetric evaluation and measurement of the free corrosion potential and 48-h-tests with gravimetric evaluation served to determine the influence of the sulfuric acid concentration and the temperature on the resistance of sheet samples at presence and absence of SO2. The influence of the flow rate was examined in 6-h-tests via rotation of pipe samples at circumferential speeds up to 2 m/s. The potential and gravimetric measurements showed that there is a resistance with , 0.1 mm/a for Alloy 33 as from about 98.5% at temperatures from 100°C. However, about 125°C there seems to be a zone at which the resistance down to about 97.5% is kept at least for a long test duration. Examinations on the flow influence indicate that there is a reactivation in the said zone with increasing flow speed. However, the flow influence is low at the other temperatures. This extension of the resistance zone about 125°C proves that the temperature sensitivity of Alloy 33 is not monotonous in highly concentrated sulfuric acid. There are corrosion maxima and minima as a function of the sulfuric acid concentration at different temperatures. If SO2 is present, there is only a limitation of the resistance zone at low test temperatures, 80°C, 100°C in the 6-h-test and 70°C, 80°C in the 48-h-test. [source]


Patency and Flow of the Internal Jugular Vein After Functional Neck Dissection,

THE LARYNGOSCOPE, Issue 1 2000
María P. Prim MD
Abstract Objectives: To assess the patency and flow of the internal jugular vein after functional neck dissection. Study Design: Prospective study of 54 internal jugular veins in 29 oncologic patients undergoing functional neck dissection between September 1994 and February 1997. Methods: Patency, presence of thrombosis, characteristics of the vein wall, compressibility, area of the vein both in rest and during Valsalva maneuver, expiratory flow speed, Valsalva flow speed, jugular flow in each side, and total jugular flow were assessed in all veins before and after dissection. All patients were evaluated before and after the procedure by means of duplex Doppler ultrasonography. Results: In no case was there thrombosis before or after the operation. Although total jugular flow decreases during the early postoperative period, it recovers to normal parameters within 3 months after surgery. Conclusions: According to these results, the patency of the internal jugular vein remains unaltered after functional neck dissection. Ultrasonographically there is no thrombosis after this procedure. [source]


Influence of lee waves on the near-surface flow downwind of the Pennines

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 627 2007
P. F. Sheridan
Abstract The results of a recent field experiment focusing on the near-surface pressure and flow fields downstream of the Pennines in northern England are presented. The main aim of the experiment is the improvement of wind forecasts downstream of orography. Trapped lee waves commonly occur in westerly flow in this region, and during the experiment there were numerous instances of apparent flow separation, indicating the formation of lee-wave rotors. The spatial variability of the near-surface flow in these circumstances is closely linked to the positions of lee-wave crests and troughs aloft, and appears to be a response to pressure gradients induced by the lee waves. For large-amplitude waves, it has been possible to demonstrate a correlation between the fractional change of the flow speed across the measurement array (which if large enough may lead to flow separation) and a normalized pressure-perturbation amplitude. For a group of lee-wave cases during which the cross-mountain flow is strong, a rapid decrease in the Scorer parameter within the lower portion of the troposphere appears to be a prerequisite for rotors to form. However, this does not guarantee their occurrence. For a fixed Scorer-parameter profile, idealized two-dimensional simulations indicate that the lee-wave-induced pressure-perturbation amplitude, and hence the occurrence of rotors, is controlled largely by the strength of the wind upstream close to the mountain-top level. It seems that the combination of a favourable Scorer-parameter profile and sufficiently strong low-level winds is required for rotors to develop. © Crown Copyright 2007. Reproduced with the permission of Her Majesty's Stationery Office. Published by John Wiley & Sons, Ltd. [source]


Estimating the mean speed of laminar overland flow using dye injection-uncertainty on rough surfaces

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 4 2001
David Dunkerley
Abstract A common method for estimating mean flow speeds in studies of surface runoff is to time the travel of a dye cloud across a measured flow path. Motion of the dye front reflects the surface flow speed, and a correction must be employed to derive a value for the profile mean speed, which is always lower. Whilst laminar flow conditions are widespread in the interrill zone, few data are available with which to establish the relationship linking surface and profile mean speeds, and there are virtually none for the flow range 100,<,Re,<,500 (Re,=,Reynolds number) which is studied here. In laboratory experiments on a glued sand board, mean flow speeds were estimated from both dye speeds and the volumetric flow relation v,=,Q/wd with d measured using a computer-controlled needle gauge at 64 points. In order to simulate conditions applicable to many dryland soils, the board was also roughened with plant litter and with ceramic tiles (to simulate surface stone cover). Results demonstrate that in the range 100,<,Re,<,500, there is no consistent relation between surface flow speeds and the profile mean. The mean relationship is v,=,0·56 vsurf, which departs significantly from the theoretical smooth-surface relation v,=,0·67 vsurf, and exhibits a considerable scatter of values that show a dependence on flow depth. Given the inapplicability of any fixed conversion factor, and the dependence on flow depth, it is suggested that the use of dye timing as a method for estimating v be abandoned in favour of precision depth measurement and the use of the relation v,=,Q/wd, at least within the laminar flow range tested. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Living on the bottom: Kinematics of benthic station-holding in darter fishes (Percidae: Etheostomatinae)

JOURNAL OF MORPHOLOGY, Issue 1 2010
Rose L. Carlson
Abstract Darters represent a substantial radiation of freshwater fishes that live in close association with the substrate in North American streams and rivers. A key feature of any darter species is therefore its ability to stay in place or to "hold station" in flowing water. Here, we quantify the station-holding performance of two morphologically divergent darter species, the fantail darter Etheostoma flabellare and the Missouri saddled darter Etheostoma tetrazonum. We also characterize the primary kinematic responses of the two species when holding station in flow speeds ranging from 4 to 56 cm s,1 in a flow tank on either plexiglas or small rock substrate. We then present a series of hypotheses about the potential hydrodynamic and functional consequences of the observed postural changes and the links among morphology, posture, and station-holding performance. On both substrates, E. tetrazonum was able to hold station at higher flow speeds than E. flabellare. On rocks, E. tetrazonum slipped at an average speed of 55.7 cm s,1 whereas E. flabellare slipped at 40.2 cm s,1. On plexiglas, E. tetrazonum slipped at an average speed of 24.7 cm s,1 whereas E. flabellare slipped at 23.1 cm s,1. We measured body and fin positions of the two species from individual frames of high-speed video while holding station on rocks and plexiglas. We found that on both substrates, the two species generally exhibited similar kinematic responses to increasing flow: the head was lowered and angled downward, the back became more arched, and the median and caudal fin rays contracted as water flow speed increased. The ventral halves of the pectoral fins were also expanded and the dorsal halves contracted. These changes in posture and fin position likely increase negative lift forces thereby increasing substrate contact forces and reducing the probability of downstream slip. J. Morphol., 2010. © 2009 Wiley-Liss, Inc. [source]


Anatomy and ultrasonography of the normal kidney in brown lemurs: Eulemur fulvus

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 8 2009
Fidiniaina Raharison
Abstract The purpose of this study is to describe the anatomy and obtain echographic measurements of normal kidneys in brown lemurs (Eulemur fulvus). The anatomical findings show that brown lemur kidneys are comparable to those of rats except for an elongated papilla. The kidneys of 16 (7 females and 9 males) lemurs were examined with two-dimensional and power Doppler ultrasonography under general anesthesia. Morphometrically, the left and right kidney surface areas are comparable (3.29 and 3.51,cm2). Kidney area has a significant linear correlation with body weight. Echo-Doppler findings show that the mean renal arterial blood flow speeds for the left and right kidneys are comparable (0.70 and 0.73,m/s). However, flow speed is higher in the male (0.79,m/s) than in the female (0.60,m/s). The renal arterial diameters are between 1.0 and 1.8,mm. The fact that anesthesia can have hemodynamic effects on renal vasculature should be taken into consideration when assessing these echographic results. Am. J. Primatol. 71:647,653, 2009. © 2009 Wiley-Liss, Inc. [source]


Observations of cross-ridge flows across steep terrain

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 633 2008
H. W. Lewis
Abstract A field experiment, Gaudex, has been conducted to address the need for quantitative measurements of turbulence in the vicinity of steep terrain. A dense network of automatic weather stations and turbulence towers was deployed along cross-ridge transects over Gaudergrat, a steep triangular cross-section ridge in eastern Switzerland. A new feature, whereby ridge-normal cross-ridge flows develop at the crest even when the flow in each valley is oriented parallel to the ridge axis, is identified. This occurs independently of whether the flow is thermally or synoptically driven. Pressure measurements across the ridge show that this flow is driven by a cross-ridge pressure gradient. Two mechanisms for generating cross-ridge flows have been identified from measurements of pressure, wind and temperature. In most cases the pressure gradient arises from a difference in flow speeds between the two sides of the ridge, caused by different valley geometries. Less commonly, the cross-ridge flow is explained by linear speed-up of the ridge-normal flow. Copyright © 2008 Royal Meteorological Society [source]