Fish Habitat (fish + habitat)

Distribution by Scientific Domains


Selected Abstracts


Ecological relevance of temporal stability in regional fish catches

JOURNAL OF FISH BIOLOGY, Issue 5 2003
H. Hinz
The concept of habitat selection based on ,Ideal Free Distribution' theory suggests that areas of high suitability may attract larger quantities of fishes than less suitable or unsuitable areas. Catch data were used from groundfish surveys to identify areas of consistently high densities of whiting Merlangius merlangus, cod Gadus morhua and haddock Melanogrammus aeglefinus in the Irish Sea and plaice Pleuronectes platessa, sole Solea solea, lemon sole Microstomus kitt in the English Channel over a period of 10 and 9 years respectively. A method was introduced to delineate areas of the seabed that held consistently high numbers of fishes objectively from large datasets. These areas may constitute important habitat characteristics which may merit further scientific investigations in respect to ,Essential Fish Habitats'(EFH). In addition, the number of stations with consistently high abundances of fishes and the number of stations where no fishes were caught gave an indication of the site specificity of the fish species analysed. For the gadoids, whiting was found to be less site specific than cod and haddock, while for the flatfishes, plaice and sole were less site specific than lemon sole. The findings are discussed in the context of previously published studies on dietary specializm. The site specificity of demersal fishes has implications for the siting process for marine protected areas as fish species with a strong habitat affinity can be expected to benefit more from such management schemes. [source]


Fish distribution and diet in relation to the invasive macrophyte Lagarosiphon major in the littoral zone of Lake Dunstan, New Zealand

ECOLOGY OF FRESHWATER FISH, Issue 1 2008
T. O. Bickel
Abstract,,, Invasive macrophytes are usually associated with negative impacts on habitat quality and a threat to native biodiversity. However, they might provide the same beneficial functions of native macrophytes, i.e., the provision of food and shelter for fish, in the absence of native macrophytes. To assess the value of the invasive macrophyte Lagarosiphon major as a fish habitat, we investigated the spatio,temporal variation in the distribution of a small littoral fish species (common bully) in the littoral of Lake Dunstan, a New Zealand hydro lake. Large- and fine-scale common bully distribution could partly be explained by the occurrence of dense L. major stands. Additionally, variability in catch per unit effort was partly explained by season and recruitment. Diet analysis indicated that common bullies in the Lagarosiphon-dominated littoral fed on invertebrates (Mollusca, Trichoptera, Chironomidae) found on exotic L. major, therefore suggesting its role as a food provider in the system. These results indicated that invasive macrophytes can provide important ecosystem functions in disturbed habitats that are otherwise devoid of native macrophytes. Any macrophyte management strategy should therefore carefully consider the costs and benefits associated with macrophyte control. [source]


Diplodus spp. assemblages on artificial reefs: importance for near shore fisheries

FISHERIES MANAGEMENT & ECOLOGY, Issue 2 2009
F. LEITÃO
Abstract, Artificial reefs have been deployed along the southern coast of Portugal (Algarve) since 1990 to enhance artisanal fisheries. The objectives of this study were to: (1) describe the colonisation process; (2) assess the role of the artificial reefs in terms of juvenile recruitment and growth and as mating/spawning areas and (3) evaluate the potential of artificial reefs as near shore artisanal fishing grounds for three economically important fish species, Diplodus bellottii (Steindachner), Diplodus sargus (L.) and Diplodus vulgaris (Geoffroy Saint-Hilaire). The fish assemblages were monitored after the deployment of a large artificial reef (Faro/Ancão) in 2002. Colonisation rates for the three species were fast. Artificial reefs play a multiple role for Diplodus spp., acting as recruitment, growth and nursery areas for juveniles, and spawning/mating areas for adults, and can thus be considered essential fish habitat. Three months after deployment of the artificial reefs, exploitable biomass was 16, 29 and 8 kg per reef group, respectively, for D. bellotti, D. sargus and D. vulgaris. These results indicate that artificial reefs quickly become good fishing grounds, where suitable financial yields may be obtained by fisher. Moreover, the artificial reefs became new and alternative fishing grounds, allowing reduction of fishing effort over traditional rocky areas that are scarce along the Algarve coast. Management measures for artificial reefs, in terms of fishing strategies, are discussed. [source]


Fish abundance and community composition in native and non-native plants following hydrilla colonisation at Lake Izabal, Guatemala

FISHERIES MANAGEMENT & ECOLOGY, Issue 2 2008
C. A. BARRIENTOS
Abstract, Fish community composition was assessed among six macrophyte habitats, including hydrilla, Hydrilla verticillata (L.F.) Royle, common native species (bulrush, Scirpus spp., muskgrass, Chara spp., eelgrass, Vallisneria americana Michx. and Illinois pondweed, Potamogeton illinoensis Morong) and no-plants, to assess potential impacts of recent hydrilla colonisation on the littoral fish community at Lake Izabal, Guatemala. Fish biomass was significantly different among habitats, with hydrilla supporting the highest fish biomass. Fish density did not differ significantly among habitats. Total fish species richness was similar (12-15 species) among habitats, but community composition changed with macrophyte presence. Biomass of mojarra, Cichlasoma maculicauda Regan, which supported the most important subsistence fishery at the lake, was significantly different among habitats and had the greatest biomass in the hydrilla habitat. Although hydrilla may adversely affect native plants, lake access and other uses, it provided useful fish habitat and likely was not detrimental to the Lake Izabal fish community composition. [source]


Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary results

FISHERIES OCEANOGRAPHY, Issue 4-5 2003
Harilaos Loukos
Abstract Recent studies suggest a reduction of primary production in the tropical oceans because of changes in oceanic circulation under global warming conditions caused by increasing atmospheric CO2 concentration. This might affect the productivity of medium and higher trophic levels with potential consequences on marine resources such as tropical tuna. Here we combine the projections of up-to-date climate and ocean biogeochemical models with recent concepts of representation of fish habitat based on prey abundance and ambient temperature to gain some insight into the impact of climate change on skipjack tuna (Katsuwonus pelamis), the species that dominates present-day tuna catch. For a world with doubled atmospheric CO2 concentration, our results suggest significant large-scale changes of skipjack habitat in the equatorial Pacific. East of the date line, conditions could be improved by an extension of the present favourable habitat zones of the western equatorial Pacific, a feature reminiscent of warming conditions associated with El Niño events. Despite its simplicity and the associated underlying hypothesis, this first simulation is used to stress future research directions and key issues for modelling developments associated to global change. [source]


Advances in river ice hydrology 1999,2003

HYDROLOGICAL PROCESSES, Issue 1 2005
Brian Morse
Abstract In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999,2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat. There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable agencies to intervene better at the time of ice-jam-induced floods; and (3) finalize ice-jam prevention methods on the St Lawrence River to safeguard its $2 billion commercial navigation industry. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Forest change and stream fish habitat: lessons from ,Olde' and New England

JOURNAL OF FISH BIOLOGY, Issue 2005
K. H. Nislow
The North Atlantic region has a long history of land use change that has influenced and will continue to influence stream ecosystems and fisheries production. This paper explores and compares the potential consequences of changes in forest cover for fish production in upland, coldwater stream environments in New England, U.S.A. and the British Isles, two regions which share important similarities with respect to overall physical, biotic and socio-economic setting. Both regions were extensively deforested and essentially no extensive old-growth forest stands remain. In New England, recovering forests, consisting almost entirely of naturally-regenerated native species, now cover >60% of the landscape. Associated with this large-scale reforestation, open landscapes, common in the 19th and first half the 20th century, are currently rare and declining in this region. In the British Isles, forests still cover <20% of the landscape, and existing forests largely consist of exotic conifer plantations stocked at high stand densities and harvested at frequent rotations. While forest restoration and conservation is frequently recommended as a fisheries habitat conservation and restoration tool, consideration of the way in which forests affect essential aspects of fish habitat suggests that response of upland stream fish to landscape change is inherently complex. Under certain environmental settings and reforestation practices, conversion of open landscapes to young-mature forests can negatively impact fish production. Further, the effects of re-establishing old-growth forests are difficult to predict for the two regions (due to the current absence of such landscapes), and are likely to depend strongly on the extent to which critical ecosystem attributes (large-scale disturbances, fish migrations, keystone species, large woody debris recruitment) are allowed to be re-established. Understanding these context-dependencies is critical for predicting fish responses, and should help managers set realistic conservation, management and restoration goals. Management may best be served by promoting a diversity of land cover types in a way that emulates natural landscape and disturbance dynamics. This goal presents very different challenges in New England and the British Isles due to differences in current and predicted land use trajectories, along with differences in ecological context and public perception. [source]


Nocturnal fish utilization of a subtropical mangrove-seagrass ecotone

MARINE ECOLOGY, Issue 2 2010
Neil Hammerschlag
Abstract Whereas diel fish migration between mangrove and seagrass habitats has been recognized for decades, quantitative studies have focused mainly on diurnal patterns of fish distribution and abundance. In general, previous studies have shown that fish abundances decline with increasing distance from mangroves; however, evidence for such a pattern at night, when many fishes are actively feeding, is scarce. The present study is the first to report nocturnal fish abundances along a continuous distance gradient from mangroves across adjacent seagrass habitat (0,120 m). Here, we used nocturnal seine sampling to test the null hypothesis (based on diurnal studies and limited nocturnal work) that fish abundance would decrease with increasing distance from shoreline. We focused on species and life-stage-specific abundance patterns of Lutjanus griseus, Sphyraena barracuda, Archosargus rhomboidalis, and Haemulon sciurus. Results indicated that assemblage composition and structure differed significantly by season, likely influenced by temperature. However, within each season, the fish habitat use pattern at both the assemblage and species-specific level generally failed to support our working null hypothesis. Species-specific analyses revealed that, for most species and life-stages examined, nocturnal abundance either did not change with distance or increased with distance from the mangrove-seagrass ecotone. Our results suggest that analyses where taxa are grouped to report overall patterns may have the potential to overlook significant species- and stage-specific variation. For fishes known to make nocturnal migrations, we recommend nocturnal sampling to determine habitat utilization patterns, especially when inferring nursery value of multiple habitats or when estimating fish production. [source]


Stream Restoration in the Upper Midwest, U.S.A.

RESTORATION ECOLOGY, Issue 4 2006
Gretchen G. Alexander
Abstract Restoration activities intended to improve the condition of streams and rivers are widespread throughout the Upper Midwest, U.S.A. As with other regions, however, little information exists regarding types of activities and their effectiveness. We developed a database of 1,345 stream restoration projects implemented from the years 1970 to 2004 for the states of Michigan, Ohio, and Wisconsin in order to analyze regional trends in goals, presence of monitoring, spatial distribution, size, and cost of river restoration projects. We found that data on individual projects were fragmented across multiple federal, state, and county agencies, as well as nonprofit groups and consulting firms. The most common restoration goals reported for this region were in-stream habitat improvement, bank stabilization, water-quality management, and dam removal. The former two were most common in Michigan and Wisconsin, where salmonid fisheries enhancement appeared to be an important concern, whereas water-quality management was most frequent in Ohio. The most common restoration activities were the use of sand traps and riprap, and other common activities were related to the improvement of fish habitat. The median cost was $12,957 for projects with cost data, and total expenditures since 1990 were estimated at $444 million. Over time, the cost of individual projects has increased, whereas the median size has decreased, suggesting that restoration resources are being spent on smaller, more localized, and more expensive projects. Only 11% of data records indicated that monitoring was performed, and more expensive projects were more likely to be monitored. Standardization of monitoring and record keeping and dissemination of findings are urgently needed to ensure that dollars are well spent and restoration effectiveness is maximized. [source]


Influence of mapping resolution on assessments of stream and streamside conditions: lessons from coastal Oregon, USA,

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 3 2009
Ken Vance-Borland
Abstract 1.Digital hydrographic data are commonly employed in research, planning, and monitoring for freshwater conservation, but hydrographic datasets differ in spatial resolution and accuracy of spatial representation, possibly leading to inaccurate conclusions or unsuitable policies for streams and streamside areas. 2.To examine and illustrate the potential for different hydrographic datasets to influence in-channel and streamside characterizations, a study area in the US Pacific Northwest was chosen because 1:100,000, 1:24,000, and densified 1:24,000 hydrography are available and widely used in research and management for several species of Pacific salmon and trout at risk. The potential was examined for differences among the digital hydrographic datasets in: (1) spatial extent to influence estimated abundances of fish habitat, streamside buffer conditions, and fish distributions; and (2) spatial position to influence estimated streamside buffer conditions and estimated stream gradient. 3.The analysis of spatial extent found the total stream length represented by the 1:100,000 hydrography was approximately one half that of 1:24,000 hydrography and only one fifth that of densified 1:24,000 hydrography. The 1:100,000 and 1:24,000 networks differed significantly for 13 out of 18 fish habitat attributes, and the three hydrographic datasets differed significantly for many characteristics in streamside buffers; fish distributions mapped at 1:24,000 added 6,14% of stream length to 1:100,000 distributions. The analysis of spatial position found few differences between the 1:100,000 and 1:24,000 hydrography in streamside buffer characteristics but significant differences in channel gradient. 4.Overall, hydrographic datasets differed only slightly in spatial position but differed in spatial extent to the point of representing different populations of streams. If species inhabiting larger streams (greater mean annual discharge) are of interest, then results derived from studies based on 1:100,000 hydrography should prove useful. However, higher-resolution hydrography can be critical when designing and implementing strategies to protect fish and other aquatic species at risk in smaller streams. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Rehabilitating fish habitats in Australia: Improving integration of science and management by agencies and the community

ECOLOGICAL MANAGEMENT & RESTORATION, Issue 3 2004
John D. Koehn
First page of article [source]


Spatial and temporal variations of two cyprinids in a subtropical mountain reserve , a result of habitat disturbance

ECOLOGY OF FRESHWATER FISH, Issue 3 2007
C.-C. Han
Abstract,,, We investigated the variations of population of two cyprinids, Varicorhinus alticorpus and Varicorhinus barbatulus, using long-term survey data (1995,2004) in the subtropical island of Taiwan. Fish abundance data showed that at the mainstem stations, V. barbatulus which used to dominate in the higher altitude had declined significantly, while V. alticorpus that used to occupy only the lower altitude had spread upward. However, at the tributaries, trend of the populations of V. barbatulus were not significantly different over time, while populations of V. alticorpus were absent at higher altitude but began to increase at lower altitude. Environmental parameters revealed that sporadic high turbidity was observed at the mainstem stations, but not at the tributaries. Images taken before and after typhoon also showed habitat destruction by debris flow at the mainstem stations. As some models predicted that suitable fish habitats will shrink because of increasing water temperature due to global warming, we showed that fish distribution may be affected by habitat disturbance due to intensified storms sooner than the actual increase of water temperature. [source]


Diel variation in the seagrass ichthyofaunas of three intermittently open estuaries in south-eastern Australia: implications for improving fish diversity assessments

FISHERIES MANAGEMENT & ECOLOGY, Issue 2 2001
S. P. Griffiths
Diel variation in the ichthyofaunas associated with Zostera capricorni Ascherson was investigated in three intermittently open estuaries in the Illawarra region, New South Wales. Each estuary showed differing diel shifts in fish assemblages, which appeared to be related to estuary size. In the largest estuary (Lake Illawarra) significantly more species were caught during the night than the day for all months. In contrast, there was little diel variation in the fish assemblages at Werri Lagoon and Shellharbour Lagoon, although many species were only caught during the night at both estuaries. The distinct diel changes at Lake Illawarra was thought to be attributable to the relatively deep channels adjacent to the seagrass beds which are better habitats for larger fishes compared with the shallow sand bars without deep channels throughout the two smaller estuaries. The composition of fish species within the three estuaries were significantly different, although each assemblage was characterised by large numbers of small-sized fish (<100 mm FL) indicating the importance of intermittently open estuaries as fish habitats. It was concluded that night sampling provided a more complete picture of the ichthyofaunas associated with Z. capricorni. As a result, inclusion of night sampling in fish diversity assessments would increase the chance of catching diurnally rare species and therefore attain a better representation of the true community structure. [source]


Effects of longitudinal variations in stream habitat structure on fish abundance: an analysis based on subunit-scale habitat classification

FRESHWATER BIOLOGY, Issue 9 2002
Mikio Inoue
SUMMARY 1.,Stream reaches contain assortments of various habitat types that can be defined at different spatial scales, such as channel unit (e.g. pools, riffles) and subunit (patches within channel units). We described longitudinal (upstream,downstream) patterns of stream habitat structure by considering subunits as structural elements, and examined their effects on the abundance of masu salmon (Oncorhynchus masou) and rosyface dace (Leuciscus ezoe) in a third-order tributary of the Teshio River in northern Hokkaido, Japan. 2.,Nine subunit types were determined on the basis of water depth, current velocity and substrate, using 0.5 × 0.5 m grids. Although both masu salmon and rosyface dace used pools as a major habitat, the former preferred a subunit type occurring at pool heads (PH subunit) while the latter preferred a slow-current edge type (SE-2 subunit). 3.,Along the course of the stream, slow-edge subunits (SE-1, 2 and 3) increased in frequency downstream while fast-edge subunits (FE-1 and 2) decreased, suggesting a downstream development of slow-current edges. Regression analyses indicated that longitudinal variation in masu salmon abundance was explained by the area of PH, rather than pools. Masu salmon density increased with the area of PH. Rosyface dace abundance was explained by a combination of water depth and the area of SE-2, both effects being positive. 4.,Longitudinal variations in the abundance of both species were related to the abundance of their preferred habitat at the subunit scale, rather than channel-unit scale. The results emphasise the importance of fine-scale patchiness when examining stream fish habitats. [source]