First Coordination Sphere (first + coordination_sphere)

Distribution by Scientific Domains


Selected Abstracts


Synthesis, Protonation and CuII Complexes of Two Novel Isomeric Pentaazacyclophane Ligands: Potentiometric, DFT, Kinetic and AMP Recognition Studies

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 1 2009
Andrés G. Algarra
Abstract The synthesis and coordination chemistry of two novel ligands, 2,6,9,12,16-pentaaza[17]metacyclophane (L1) and 2,6,9,12,16-pentaaza[17]paracyclophane (L2), is described. Potentiometric studies indicate that L1 and L2 form a variety of mononuclear complexes the stability constants of which reveal a change in the denticity of the ligand when moving from L1 to L2, a behaviour that can be qualitatively explained by the inability of the paracyclophanes to simultaneously use both benzylic nitrogen atoms for coordination to a single metal centre. In contrast, the formation of dinuclear hydroxylated complexes is more favoured for the paraL2 ligand. DFT calculations have been carried out to compare the geometries and relative energies of isomeric forms of the [CuL]2+ complexes of L1 and L2 in which the cyclophane acts either as tri- or tetradentate. The results indicate that the energy cost associated with a change in the coordination mode of the cyclophane from tri- to tetradentate is moderate for both ligands so that the actual coordination mode can be determined not only by the characteristics of the first coordination sphere but also by the specific interactions with additional nearby water molecules. The kinetics of the acid promoted decomposition of the mono- and dinuclear CuII complexes of both cyclophanes have also been studied. For both ligands, dinuclear complexes convert rapidly to mononuclear species upon addition of excess acid, the release of the first metal ion occurring within the mixing time of the stopped-flow instrument. Decomposition of the mononuclear [CuL2]2+ and [CuHL2]3+ species occurs with the same kinetics, thus showing that protonation of [CuL2]2+ occurs at an uncoordinated amine group. In contrast, the [CuL1]2+ and [CuHL1]3+ species show different decomposition kinetics indicating the existence of significant structural reorganisation upon protonation of the [CuL1]2+ species. The interaction of AMP with the protonated forms of the cyclophanes and the formation of mixed complexes in the systems Cu,L1 -AMP, Cu,L2 -AMP, and Cu,L3 -AMP, where L3 is the related pyridinophane containing the same polyamine chain and 2,6-dimethylpyridine as a spacer, is also reported. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Lanthanide-Based Conjugates as Polyvalent Probes for Biological Labeling

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 18 2008
Stéphanie Claudel-Gillet
Abstract A series of lanthanide complexes of [LnL(H2O)] composition, suitable for biological labeling has been studied, in which L is a strongly chelating ligand containing chromophoric bipyridylcarboxylate units and Ln = Sm, Eu, Gd, Tb, and Dy. For the Gd complex, a combined 17O NMR and 1H NMRD study has been performed. The water exchange rate obtained, kex298 = (5.2,±,0.6),×,106 s,1, is slightly higher than those for [Gd(dota)(H2O)], or [Gd(dtpa)(H2O)]2,. Transformation of the uncoordinated carboxylate function of the ligand into an activated ester ensures covalent linking of the complex to bovine serum albumine (BSA). The relaxivity properties of the Gd complex labeled on BSA revealed a limited increase of both longitudinal and transversal relaxivities. This can be related to the partial replacement of the inner-sphere water molecules by coordinating functions of the protein. Additionally, the Sm and Dy complexes are described and chemically characterized. Their photophysical properties were investigated by means of absorption, steady-state and time-resolved spectroscopy, evidencing efficient photosensitization of the lanthanide emission by ligand excitation (antenna effect). Luminescence lifetime measurements confirmed the presence of a water molecule in the first coordination sphere that partly explained the relatively poor luminescence properties of the Dy and Sm complexes in aqueous solutions. The spectroscopic properties of the series of complexes are questioned in terms of time-resolved acquisition techniques. Finally, their availability for use in time-resolved luminescence microscopy is demonstrated by staining experiments of rat brain slices, where the complex showed enhanced localization in some hydrophilic regions of the blood,brain barrier (BBB).(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Conformational states of human H-Ras detected by high-field EPR, ENDOR, and 31P NMR spectroscopy ,

MAGNETIC RESONANCE IN CHEMISTRY, Issue S1 2005
Michael Spoerner
Abstract Ras is a central constituent of the intracellular signal transduction that switches between its inactive state with GDP bound and its active state with GTP bound. A number of different X-ray structures are available. Different magnetic resonance techniques were used to characterise the conformational states of the protein and are summarised here. 31P NMR spectroscopy was used as probe for the environment of the phosphate groups of the bound nucleotide. It shows that in liquid solution additional conformational states in the GDP as well as in the GTP forms coexist which are not detected by X-ray crystallography. Some of them can also be detected by solid-state NMR in the micro crystalline state. EPR and ENDOR spectroscopy were used to probe the environment of the divalent metal ion (Mg2+ was replaced by Mn2+) bound to the nucleotide in the protein. Here again different states could be observed. Substitution of normal water by 17O-enriched water allowed the determination of the number of water molecules in the first coordination sphere of the metal ion. In liquid solution, they indicate again the existence of different conformational states. At low temperatures in the frozen state ENDOR spectroscopy suggests that only one state exists for the GDP- and GTP-bound form of Ras, respectively. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Ethylene Biosynthesis by 1-Aminocyclopropane-1-Carboxylic Acid Oxidase: A DFT Study

CHEMISTRY - A EUROPEAN JOURNAL, Issue 34 2006
Arianna Bassan Dr.
Abstract The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO2, cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of OO bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by OO bond heterolysis leads to a very reactive iron(IV),oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal. [source]


Unexpected Aggregation of Neutral, Xylene-Cored Dinuclear GdIII Chelates in Aqueous Solution

CHEMISTRY - A EUROPEAN JOURNAL, Issue 26 2006
Jérôme Costa Dr.
Abstract We have synthesized ditopic ligands L1, L2, and L3 that contain two DO3A3, metal-chelating units with a xylene core as a noncoordinating linker (DO3A3, = 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate; L1 = 1,4-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L2 = 1,3-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L3 = 3,5-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzoic acid). Aqueous solutions of the dinuclear GdIII complexes formed with the three ligands have been investigated in a variable-temperature, multiple-field 17O NMR and 1H relaxivity study. The 17O longitudinal relaxation rates measured for the [Gd2L1,3(H2O)2] complexes show strong field dependence (2.35,9.4 T), which unambiguously proves the presence of slowly tumbling entities in solution. The proton relaxivities of the complexes, which are unexpectedly high for their molecular weight, and in particular the relaxivity peaks observed at 40,50 MHz also constitute experimental evidences of slow rotational motion. This was explained in terms of self-aggregation related to hydrophobic interactions, , stacking between the aromatic linkers, or possible hydrogen bonding between the chelates. The longitudinal 17O relaxation rates of the [Gd2L1,3(H2O)2] complexes have been analysed with the Lipari,Szabo approach, leading to local rotational correlation times of 150,250 ps and global rotational correlation times of 1.6,3.4 ns (cGd: 20,50 mM), where is attributed to local motions of the Gd segments, while describes the overall motion of the aggregates. The aggregates can be partially disrupted by phosphate addition; however, at high concentrations phosphate interferes in the first coordination sphere by replacing the coordinated water. In contrast to the parent [Gd(DO3A)(H2O)1.9], which presents a hydration equilibrium between mono- and dihydrated species, a hydration number of q = 1 was established for the [Ln2L1,3(H2O)2] chelates by 17O chemical shift measurements on Ln = Gd and UV/Vis spectrophotometry for Ln = Eu. The exchange rate of the coordinated water is higher for [Gd2L1,3(H2O)2] complexes ( = 7.5,12.0×106 s,1) than for [Gd(DOTA)(H2O)],. The proton relaxivity of the [Gd2L1,3(H2O)2] complexes strongly decreases with increasing pH. This is related to the deprotonation of the inner-sphere water, which has also been characterized by pH potentiometry. The protonation constants determined for this process are logKOH = 9.50 and 10.37 for [Gd2L1(H2O)2] and [Gd2L3(H2O)2], respectively. [source]