Alpine Regions (alpine + regions)

Distribution by Scientific Domains


Selected Abstracts


Topographic controls on spatial patterns of conifer transpiration and net primary productivity under climate warming in mountain ecosystems

ECOHYDROLOGY, Issue 4 2009
C. Tague
Abstract The response of forests to a warmer climate depends upon the direct impacts of temperature on forest ecophysiology and indirect effects related to a range of biogeophysical processes. In alpine regions, reduced snow accumulation and earlier melt of seasonal snowpacks are expected hydrologic consequences of warming. For forests, this leads to earlier soil moisture recharge, and may increase summer drought stress. At the same time, increased air temperature alters plant net primary productivity. Most models of climate change impacts focus either on hydrologic behaviour or ecosystem structure or function. In this study we address the interactions between them. We use a coupled model of eco-hydrologic processes to estimate changes in evapotranspiration and vegetation productivity under temperature warming scenarios. Results from Yosemite National Park, in the California Sierra Nevada, suggest that for most snow-dominated elevations, the shift in the timing of recharge is likely to lead to declines in productivity and vegetation water use, even with increased water-use efficiency associated with elevated atmospheric CO2 concentrations. The strength of this effect, however, depends upon interactions between several factors that vary substantially across elevation gradients, including the initial timing of melt relative to the summer growing season, vegetation growth, and the extent to which initial vegetation is water-limited or temperature-limited. These climate-driven changes in vegetation water use also have important implications for summer streamflow. Results from this analysis provide a framework that can be used to develop strategic measurement campaigns and to extrapolate from local measurements of vegetation responses to watershed scale patterns. Copyright © 2009 John Wiley & Sons, Ltd. [source]


A regional impact assessment of climate and land-use change on alpine vegetation

JOURNAL OF BIOGEOGRAPHY, Issue 3 2003
Thomas Dirnböck
Abstract Aim, Assessing potential response of alpine plant species distribution to different future climatic and land-use scenarios. Location, Four mountain ranges totalling 150 km2 in the north-eastern Calcareous Alps of Austria. Methods, Ordinal regression models of eighty-five alpine plant species based on environmental constraints and land use determining their abundance. Site conditions are simulated spatially using a GIS, a Digital Terrain Model, meteorological station data and existing maps. Additionally, historical records were investigated to derive data on time spans since pastures were abandoned. This was then used to assess land-use impacts on vegetation patterns in combination with climatic changes. Results, A regionalized GCM scenario for 2050 (+ 0.65 °C, ,30 mm August precipitation) will only lead to local loss of potential habitat for alpine plant species. More profound changes (+ 2 °C, ,30 mm August precipitation; + 2 °C, ,60 mm August precipitation) however, will bring about a severe contraction of the alpine, non-forest zone, because of range expansion of the treeline conifer Pinus mugo Turra and many alpine species will loose major parts of their habitat. Precipitation change significantly influences predicted future habitat patterns, mostly by enhancing the general trend. Maintenance of summer pastures facilitates the persistence of alpine plant species by providing refuges, but existing pastures are too small in the area to effectively prevent the regional extinction risk of alpine plant species. Main conclusions, The results support earlier hypotheses that alpine plant species on mountain ranges with restricted habitat availability above the treeline will experience severe fragmentation and habitat loss, but only if the mean annual temperature increases by 2 °C or more. Even in temperate alpine regions it is important to consider precipitation in addition to temperature when climate impacts are to be assessed. The maintenance of large summer farms may contribute to preventing the expected loss of non-forest habitats for alpine plant species. Conceptual and technical shortcomings of static equilibrium modelling limit the mechanistic understanding of the processes involved. [source]


SNOW ALGAE OF THE WINDMILL ISLANDS, CONTINENTAL ANTARCTICA: DESMOTETRA AUREOSPORA, SP.

JOURNAL OF PHYCOLOGY, Issue 1 2001

Two cryophilic Desmotetra species, D. aureospora, sp. nov., and D. antarctica (Fritsch) Ling appear to be unique to the southern hemisphere snow ecosystem, or at least to the Windmill Island region, Antarctica. They have not been encountered in previous extensive studies of the Arctic and northern alpine regions. Also unusual are the higher pH (6.8 and 7.8) and conductivities of 279 ,S·cm,1 and 426 ,S·cm,1 for habitat conditions of D. antarctica that can be attributed to the influence of penguin guano. Both species are characterized by cells enveloped in individual mucilage layers, 1,3 contractile vacuoles, and a cup-shaped chloroplast containing a diffuse pyrenoid. The cells divided in three planes to form cubical loosely aggregated green cell packages embedded in mucilage. Vegetative cells of the two species cannot be distinguished with certainty; however, their zygospores are very different. Desmotetra aureospora has spherical, smooth-walled, golden zygospores, whereas D. antarctica has pale, yellow green, aereolate zygospores. Mucilage stalk morphology of cells in stationary-phase cultures can also be used to separate the two species. Zygospores of D. antarctica have previously been identified as the snow alga Trochiscia antarctica Fritsch. Both species are currently maintained in culture at the Australian Antarctic Division. The cultures did not grow at temperatures above 15° C. The two species are compared with the soil alga D. stigmatica (Deason) Deason et Floyd, the only other species in the genus, and also with Chlorosarcina stigmatica Deason strain T105. Results show that the three Desmotetra species form a natural group and that the absence or presence of a wall on the zoospore is of dubious value in classifications of green algal taxa above the species level. [source]


The relative role of dispersal and local interactions for alpine plant community diversity under simulated climate warming

OIKOS, Issue 8 2007
Kari Klanderud
Most studies on factors determining diversity are conducted in temperate or warm regions, whereas studies in climatically harsh and low productivity areas, such as alpine regions, are rare. We examined the relative roles of seed availability and different biotic and abiotic factors for the diversity of an alpine plant community in southern Norway. Furthermore, because climate warming is predicted to be an important driver of alpine species diversity, we assessed how the relative impacts of dispersal and local interactions on diversity might change under experimental warming (open top chambers, OTCs). Addition of seeds from 27 regional species increased community diversity. The establishment of the species was negatively related both to the diversity of the existing system and the cover of the abundant dwarf shrub Dryas octopetala. These results show that both species dispersal limitation and local biotic interactions are important factors for alpine plant community diversity. Despite relatively harsh environmental conditions and low productivity, competition from the resident vegetation appeared to have a greater role for species establishment and diversity than facilitation and experimental warming. Higher temperature appeared to increase the negative relationship between resident species diversity and species establishment. This may suggest that climate warming can increase the role of interspecific competition for alpine plant community structure, and thus alter the long-term effects of biotic interactions on diversity. [source]