Alpine Environments (alpine + environment)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


ROCK-SURFACE TEMPERATURES OF BASALT IN THE DRAKENSBERG ALPINE ENVIRONMENT, LESOTHO

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3 2007
STEFAN GRAB
ABSTRACT. Rock temperature data are presented for a variety of topographic localities at a high Drakensberg site. The objective is to investigate the spatiotemporal variations of surface rock temperatures in high Drakensberg basalt. The temperature results are then used to discuss possible implications for thermal stress fatigue and frost-induced weathering. TinytalkÔ data loggers and probes were used for rock-surface temperature recording. Long-term measurements were recorded over 12 months from May 2002 to April 2003, at a 1-hour logging interval and rock depth of 1 cm for a highaltitude (3300 m a.s.l.) interfluve and fracture site. Whilst the north-facing rock surface experiences negligible hours below ,3°C, the south-facing rock surface and interfluve sites are subjected to considerable periods below ,3°C, which falls within the ,frost cracking window'. It is concluded that the substantial contrasts of recorded rock thermal parameters over small spatial scales between various topographic settings, highlight that site-specific measurements across the broader scale are required for an adequate evaluation of regional weathering and its associated landform development. [source]


Delayed Selfing in an Alpine Biennial Gentianopsis paludosa (Gentianaceae) in the Qinghai-Tibetan Plateau

JOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 6 2010
Yuan-Wen Duan
Delayed selfing could provide ovules with an opportunity to be fertilized as a means of "pollination assurance" before the flowers wilt. It could, thus, be regarded as an adaptation to unpredictable pollinator environments. Within the alpine biennial Gentianopsis paludosa, the showy flowers and herkogamy at the early stage of a flower's life cycle may favor outcrossing. As the flower ages, anthers contact the central stigma due to the elongation of all filaments, resulting in autonomous selfing. Flower visitors are extremely rare in a high altitude population; and examination of the mating system indicates that G. paludosa is self-pollinated under natural conditions in this population. While at the lower altitude, the bumblebee visitation rate is relatively high but possibly unreliable. Stigma receptivity is the highest on the third day of anthesis, and decreases thereafter. Pollen viability is the highest when flowers open, and gradually decreases later. Self-pollination of G. paludosa occurs at the late stage of a flower's lifecycle when stigma receptivity and pollen viability have both decreased, suggesting delayed selfing and assurance of seed production. This delayed selfing could assure seed production under the constraints of pollinator scarcity, but ensure outcrossing when pollinators were available. Such a flexible pollination mechanism is highly adaptive in the alpine environment of the Qinghai-Tibetan Plateau. [source]


Nitrogen and carbon source,sink relationships in trees at the Himalayan treelines compared with lower elevations

PLANT CELL & ENVIRONMENT, Issue 10 2008
MAI-HE LI
ABSTRACT No single hypothesis or theory has been widely accepted for explaining the functional mechanism of global alpine/arctic treeline formation. The present study tested whether the alpine treeline is determined by (1) the needle nitrogen content associated with photosynthesis (carbon gain); (2) a sufficient source,sink ratio of carbon; or (3) a sufficient C,N ratio. Nitrogen does not limit the growth and development of trees studied at the Himalayan treelines. Levels of non-structural carbohydrates (NSC) in trees were species-specific and site-dependent; therefore, the treeline cases studied did not show consistent evidence of source/carbon limitation or sink/growth limitation in treeline trees. However, results of the combined three treelines showed that the treeline trees may suffer from a winter carbon shortage. The source capacity and the sink capacity of a tree influence its tissue NSC concentrations and the carbon balance; therefore, we suggest that the persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar:starch ratio, and a balanced carbon source,sink relationship. [source]


Stable carbon isotopes as an indicator for soil degradation in an alpine environment (Urseren Valley, Switzerland)

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 10 2009
Monika Schaub
Analyses of soil organic carbon (SOC) content and stable carbon isotope signatures (,13C) of soils were assessed for their suitability to detect early stage soil erosion. We investigated the soils in the alpine Urseren Valley (southern central Switzerland) which are highly impacted by soil erosion. Hill slope transects from uplands (cambisols) to adjacent wetlands (histosols and histic to mollic gleysols) differing in their intensity of visible soil erosion, and reference wetlands without erosion influence were sampled. Carbon isotopic signature and SOC content of soil depth profiles were determined. A close correlation of ,13C and carbon content (r,>,0.80) is found for upland soils not affected by soil erosion, indicating that depth profiles of ,13C of these upland soils mainly reflect decomposition of SOC. Long-term disturbance of an upland soil is indicated by decreasing correlation of ,13C and SOC (r,,,0.80) which goes in parallel with increasing (visible) damage at the site. Early stage soil erosion in hill slope transects from uplands to adjacent wetlands is documented as an intermediate ,13C value (,27.5,) for affected wetland soil horizons (0,12,cm) between upland (aerobic metabolism, relatively heavier ,13C of ,26.6,) and wetland isotopic signatures (anaerobic metabolism, relatively lighter ,13C of ,28.6,). Carbon isotopic signature and SOC content are found to be sensitive indicators of short- and long-term soil erosion processes. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Grassland productivity in an alpine environment in response to climate change

AREA, Issue 3 2005
Yong Zha
Situated in a climatically stressful environment, alpine grassland is sensitive to subtle climate changes in its productivity. We remedy the current deficiency in studying grassland productivity by taking the integrated effect of all relevant factors into consideration. The relative importance of temperature, rainfall and evaporation to the alpine grassland productivity in western China was determined through analysis of their relationship with the normalized difference vegetation index (NDVI) between 1981 and 2000. Climate warming stimulated grassland productivity in the 1980s, but hampered it in the 1990s. Temperature is more important than rainfall to grassland productivity early in the growing season. However, their relative importance is reversed late in the growing season. Monthly summer month rainfall modified by maximum monthly temperature is a good predictor of alpine grassland productivity at 62.0 per cent. However, the best predictor is water deficiency, which is able to improve the estimation accuracy to 78.3 per cent. Hence, the impact of temperature on grassland productivity is better studied indirectly through evaporation. [source]


Effects of stocked trout on native fish communities in boreal foothills lakes

ECOLOGY OF FRESHWATER FISH, Issue 2 2010
Leslie E. Nasmith
Nasmith LE, Tonn WM, Paszkowski CA, Scrimgeour GJ. Effects of stocked trout on native fish communities in boreal foothills lakes. Ecology of Freshwater Fish 2010: 19: 279,289. © 2010 John Wiley & Sons A/S Abstract,,, Ecological effects of stocking nonnative trout into lakes are receiving increased attention, especially in alpine environments. We assessed effects of stocked trout on native forage fishes in the boreal foothills of Alberta (Canada) by comparing fish density, population size structure and spatial and temporal activities in stocked and unstocked lakes over 3 years (2005,2007). The numerically dominant dace (primarily Phoxinus spp.) were larger in stocked lakes, consistent with size-limited predation. Dace were also more crepuscular and concentrated on the lake-bottom in stocked lakes, compared to more daytime activity in the water column in unstocked lakes. There were, however, no demonstrable effects of trout on the abundance of forage fish. The lack of major population-level impacts of stocked trout suggests that current stocking practices, characteristics of boreal foothill lakes (e.g. thermal structure, abundant invertebrates, dense macrophytes) and/or behavioural adjustments of forage fish contribute to healthy native fish populations in our stocked lakes. [source]


A Bayesian hierarchical extreme value model for lichenometry

ENVIRONMETRICS, Issue 6 2006
Daniel Cooley
Abstract Currently, there is a tremendous scientific research effort in the area of climate change. In this paper, our motivation is to improve the understanding of historical climatic events such as the Little Ice Age (LIA), a period of relatively cold weather around 1450,1850 AD. Although the LIA is well documented in Europe, its extent and timing are not known in areas of the globe where climatological records were not kept during this period. To study the climate, which predates historical records, proxy climate records must be used. A proxy record for the timing of climatic cooling events are the ages of the moraines left behind by glacial advances. Unfortunately, to determine the ages of these moraines in alpine environments there is little material available but lichens. Hence, lichenometry was developed to determine the ages of glacial landforms by using lichen measurements. To our knowledge, this article provides the first attempt at deriving a comprehensive statistical model for lichenometry. Our model foundation is based on extreme value theory because only the largest lichens are measured in lichenometry studies. This application is novel to extreme value theory because the quantities of interest (the ages of climatic events) are not the measured quantities (lichen diameters), i.e., it is a inverse problem. We model the lichen measurements with the generalized extreme value (GEV) distribution, upon which a Bayesian hierarchical model is built. The hierarchical model enables estimation of the hidden covariate ages of the moraines. The model also allows for pooling of data from different locations and evaluation of spatial differences in lichen growth. Parameter inference is obtained using a straightforward Markov Chain Monte Carlo method. Our procedure is applied to data gathered from the Cordillera Real region in Bolivia. Copyright © 2006 John Wiley & Sons, Ltd. [source]


ALPINE AREAS IN THE COLORADO FRONT RANGE AS MONITORS OF CLIMATE CHANGE AND ECOSYSTEM RESPONSE,

GEOGRAPHICAL REVIEW, Issue 2 2002
MARK W. WILLIAMS
ABSTRACT. The presence of a seasonal snowpack in alpine environments can amplify climate signals. A conceptual model is developed for the response of alpine ecosystems in temperate, midlatitude areas to changes in energy, chemicals, and water, based on a case study from Green Lakes Valley,Niwot Ridge, a headwater catchment in the Colorado Front Range. A linear regression shows the increase in annual precipitation of about 300 millimeters from 1951 to 1996 to be significant. Most of the precipitation increase has occurred since 1967. The annual deposition of inorganic nitrogen in wetfall at the Niwot Ridge National Atmospheric Deposition Program site roughly doubled between 1985,1988 and 1989,1992. Storage and release of strong acid anions, such as those from the seasonal snowpack in an ionic pulse, have resulted in episodic acidification of surface waters. These biochemical changes alter the quantity and quality of organic matter in high-elevation catchments of the Rocky Mountains. Affecting the bottom of the food chain, the increase in nitrogen deposition may be partly responsible for the current decline of bighorn sheep in the Rocky Mountains. [source]


Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes

GLOBAL CHANGE BIOLOGY, Issue 11 2008
KATHLEEN RÜHLAND
Abstract A synthesis of over 200 diatom-based paleolimnological records from nonacidified/nonenriched lakes reveals remarkably similar taxon-specific shifts across the Northern Hemisphere since the 19th century. Our data indicate that these diatom shifts occurred in conjunction with changes in freshwater habitat structure and quality, which, in turn, we link to hemispheric warming trends. Significant increases in the relative abundances of planktonic Cyclotella taxa (P<0.01) were concurrent with sharp declines in both heavily silicified Aulacoseira taxa (P<0.01) and benthic Fragilaria taxa (P<0.01). We demonstrate that this trend is not limited to Arctic and alpine environments, but that lakes at temperate latitudes are now showing similar ecological changes. As expected, the onset of biological responses to warming occurred significantly earlier (P<0.05) in climatically sensitive Arctic regions (median age=ad 1870) compared with temperate regions (median age=ad 1970). In a detailed paleolimnological case study, we report strong relationships (P<0.005) between sedimentary diatom data from Whitefish Bay, Lake of the Woods (Ontario, Canada), and long-term changes in air temperature and ice-out records. Other potential environmental factors, such as atmospheric nitrogen deposition, could not explain our observations. These data provide clear evidence that unparalleled warming over the last few decades resulted in substantial increases in the length of the ice-free period that, similar to 19th century changes in high-latitude lakes, likely triggered a reorganization of diatom community composition. We show that many nonacidified, nutrient-poor, freshwater ecosystems throughout the Northern Hemisphere have crossed important climatically induced ecological thresholds. These findings are worrisome, as the ecological changes that we report at both mid- and high-latitude sites have occurred with increases in mean annual air temperature that are less than half of what is projected for these regions over the next half century. [source]


Does alpine grazing reduce blazing?

AUSTRAL ECOLOGY, Issue 8 2006
A landscape test of a widely-held hypothesis
Abstract ,Alpine grazing reduces blazing' is a widely and strongly held view concerning the effects of livestock grazing on fuels, and therefore fire behaviour and impact, in Australia's high country landscapes. As a test of this hypothesis, we examined the patterns of burning across the alpine (treeless) landscapes of the Bogong High Plains in Victoria, following the extensive fires of January 2003. Data were collected from multiple transects, each 3,5 km long, with survey points located randomly at either 50, 200 or 500 m intervals. The transects traversed the major regions of the Bogong High Plains, both grazed and ungrazed. At each point, we recorded whether the point was burnt or unburnt, the vegetation type (closed-heath, open-heath, grassland or herbfield), the estimated prefire shrub cover, slope, aspect, and a GPS location. At burnt heathland sites, we recorded the minimum twig diameter (an a posteriori measure of fire severity) in a sample of common shrubs. In total, there were 108 km of transect lines, 419 survey points and 4050 twig measurements, with sample points equally distributed across grazed and ungrazed country. The occurrence of fire (i.e. burnt or unburnt) in grazed and ungrazed areas was analysed by logistic regression; the variation in twig diameters by anova. Approximately half of all points were burnt. There was no statistically significant difference between grazed and ungrazed areas in the proportion of points burnt. Fire occurrence was determined primarily by vegetation type, with the proportion burnt being 0.87 for closed-heath, 0.59 for open-heath, and 0.13 for grassland and all snow-patch herbfield points unburnt. In both closed-heath and open-heath, grazing did not significantly lower the severity of fire, as measured by the diameter of burnt twigs. We interpret the lack of a grazing effect in terms of shrub dynamics (little or no grazing effect on long-term cover of taller shrubs), diet and behaviour of cattle (herbs and dwarf shrubs eaten; tall shrubs not eaten and closed-heath vegetation generally avoided), and fuel flammability (shrubs more flammable than grass). Whatever effects livestock grazing may have on vegetation cover, and therefore fuels in alpine landscapes, they are likely to be highly localized, with such effects unlikely to translate into landscape-scale reduction of fire occurrence or severity. The use of livestock grazing in Australian alpine environments as a fire abatement practice is not justified on scientific grounds. [source]