Alkyl Groups (alkyl + groups)

Distribution by Scientific Domains
Distribution within Chemistry

Selected Abstracts

Topological Electronegativity Index and Its Application , I. Ionization Potentials of Alkyl Groups and Alkyl Halides

Chenzhong Cao
Abstract A Topological Electronegativity Index (TEI) for alkyl group was developed, based on the bond adjacency matrix of the radical atom. Taking the radical atom and the adjacency atoms (or groups) as the vertices of molecular graph of the alkyl group, the bond adjacency matrix was constructed, in which the diagonal elements were assigned the Pauling electronegativity of the atom (or group), and the off-diagonal elements were assigned values 1 or 0. The off-diagonal elements represent the bond connections: that is when the two atoms (or groups) connect with each other, it is 1; otherwise is 0. From the matrix, the eigenvalues were obtained and its geometric mean value was considered as the TEI of an alkyl. The calculated TEI has good correlation with its experimental ionization potential. Further, the TEI was applied to correlate with the ionization potentials of alkyl halides and substituted ethenes, and to correlate with the Bond Dissociation Energies (BDEs) of the CiH bonds in alkanes. [source]

ChemInform Abstract: Palladium-Catalyzed sp3 C,H Activation of Simple Alkyl Groups: Direct Preparation of Indoline Derivatives from N-Alkyl-2-bromoanilines.

CHEMINFORM, Issue 37 2008
Toshiaki Watanabe
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]

One-Pot ,-Substitution of Enones with Alkyl Groups to ,-Alkyl Enones.

CHEMINFORM, Issue 39 2005
Jun-ichi Matsuo
Abstract For Abstract see ChemInform Abstract in Full Text. [source]

ChemInform Abstract: Stereoselective Conjugate Addition of Alkyl Groups to (S)-4-(tert-Butyldimethylsilyloxy)-2-cyclopentenone Derivatives.

CHEMINFORM, Issue 5 2001
Takayuki Yakura
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]

Exclusive Synthesis of ,-Alkylpyrroles under Indium Catalysis: Carbonyl Compounds as Sources of Alkyl Groups

Teruhisa Tsuchimoto Prof.
No longer difficult: Just mixing readily available carbonyl compounds, pyrroles, and nucleophiles with an indium catalyst was found to give ,-alkylpyrroles in a regiospecific manner. Removal of benzyl (Bn) and cumyl groups from the nitrogen atoms of the products enables access to nitrogen-unsubstituted ,-alkylpyrroles (see scheme). [source]

Soft Metal Ion-Selective Electrodes Based on ,-Coordinate Calixarene Derivatives

ELECTROANALYSIS, Issue 15-16 2003
Setsuko Yajima
Abstract Calix[4]arene derivatives incorporating ,-unsaturated alkenyl groups or saturated alkyl groups and their monomeric analogues were used as ,-coordinate neutral carriers for ion-selective electrodes (ISEs) of soft metals [silver and thallium(I)] ions. The EMF responses were excellent for most of the ISEs, among which there was no significant difference in the response. The ion selectivities of the ISEs depend on the structure of neutral carriers employed. 1H NMR study explains the difference in the ion selectivity. In the metal-ion complexation by the ,-coordinate calixarene derivatives, thallium ion is likely to interact with the calixarene skeleton, while silver ion tends to interact with both of the calixarene skeleton and the ,-unsaturated alkenyl groups. [source]

Aluminium Complexes of a Phenoxyimine Ligand with a Pendant Imidazolium Moiety: Synthesis, Characterisation and Evidence for Hydrogen Bonding in Solution

Stefano Milione
Abstract Novel alkylaluminium complexes (phim)AlMe2 (1) and(phimid)AlR2+Br, [R = Me (2), R = iBu (3)] bearing the Schiff base ligands 3,5- tBu2 -2-(OH)C6H2CH=NiPr (phim -H) and3,5- tBu2 -2-(OH)C6H2CH=NCH2CH2[CH(NCHCHNiPr)]Br(phimid -H·Br) have been prepared and fully characterised. Complexes 1,3 each have a tetrahedral structure, with the aluminium atom surrounded by the oxygen and nitrogen atoms of the chelating ligand and two alkyl groups. The structures of phimid -H·Br and of complex 1 have been determined by X-ray diffraction studies. Investigation of the solution structures of 1,3 by 1H NMR spectroscopy revealed that the coordinated phimid ligand is involved in hydrogen bonding with bromide anion. Treatment of 1 with B(C6F5)3 led smoothly to (phim)Al(C6F5)Me (4) by transfer of a C6F5 group from MeB(C6F5)3, to the initially formed coordinatively unsaturated cationic intermediate. In contrast, treatment of 2 with one equiv. of B(C6F5)3 afforded the cationic monomethyl species (phimid)AlMeBr+,MeB(C6F5)3, (5), stabilised by the coordination of the bromide anion acting as a Lewis base.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]

Synthesis, Solution-State and Solid-State Structural Characterization of Monocationic Nitrido Heterocomplexes [M(N)(DTC)(PNP)]+ (M = 99Tc, Re; DTC = Dithiocarbamate; PNP = Heterodiphosphane)

Cristina Bolzati
Abstract Mono-cationic nitrido heterocomplexes of general formula [M(N)(DTC)(PNP)]+ (where M is 99Tc or Re, DTC is the mono-anionic form of a dithiocarbamate ligand, and PNP is a diphosphane ligand with a tertiary amine-containing five-membered spacer) were prepared by ligand-exchange reactions with the labile precursors [M(N)Cl2(PPh3)2] in dichloromethane/alcohol mixtures. The molecular structure of the representative rhenium complex [Re(N)(dedc)(pnp2)][PF6] (1) displays a distorted, square-pyramidal geometry with the dithiocarbamate sulfur and the diphosphane phosphorus atoms spanning the four coordination positions on the equatorial plane. If the additional interactions between the nitrido nitrogen and the weakly bonded transN -diphosphane heteroatom, the molecular geometry can be viewed as pseudo-octahedral. The structure in solution, as established by multinuclear NMR spectroscopy and ESI spectrometry, is monomeric, and identical to that shown in the solid state. Replacement of the phenyl groups on the phosphorous atoms in complexes 1, 2, 5, and 6 with alkyl groups modified neither the course of the reaction nor the composition of the resulting complexes. These results, together with the observation that no symmetrical complexes containing two identical bidentate ligands were produced in these reactions, strongly supports the conclusion that a mixed coordination sphere, composed by a combination of ,-donor and ,-acceptor atoms around the [M,N]2+ group, constitutes a highly stable system. Compounds containing dangling alkyl-substituted groups in the outer sphere (3, 4, 7, and 8) were fully characterized by multinuclear NMR spectroscopy and ESI mass spectrometry. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]

Polymers from renewable resources: Bulk ATRP of fatty alcohol-derived methacrylates

Gökhan Çayli
Abstract Copper-mediated atom transfer radical polymerization (ATRP) of lauryl methacrylate (LMA) and other long-chain methacrylates was investigated in bulk at 35,°C by using CuCl/N,N,N,,N,,N,, -pentamethyldiethylenetriamine (PMDETA)/tricaprylylmethylammonium chloride (Aliquat®336) as the catalyst system and ethyl 2-bromoisobutyrate (EBIB) as the initiator. The investigated monomers can be derived from fatty alcohols and are therefore an important renewable resource for a sustainable development of our future. The amounts of ligand, Aliquat®336 and CuCl were optimized and the effect of their concentrations on the control of the polymerization and the observed conversions were investigated. It was found that a molar ratio of EBIB/CuCl/Ligand/Aliquat®336 of 1,:,1,:,3,:,1 provided the highest conversions of LMA and the best controlled polymerizations. These optimized conditions allowed for the synthesis of poly(lauryl methcarylate)s with different targeted DP (25, 50, 75, 100, 120, 240, and 500), including high-molecular-weight polymers with narrow molecular weight distributions. In addition, methacrylate monomers were prepared from fatty alcohols (capric, myristic, palmitic, stearic) and polymerized using the developed procedure to obtain polymers with the same DP and different chain lengths (C10, C12, C14, C16, and C18) of pending alkyl groups. Finally, the thermal properties of these polymers were examined by differential scanning calorimetry and thermogravimetric analysis. [source]

Helically ,-Stacked Conjugated Polymers Bearing Photoresponsive and Chiral Moieties in Side Chains: Reversible Photoisomerization-Enforced Switching Between Emission and Quenching of Circularly Polarized Fluorescence

Hiroyuki Hayasaka
Abstract Novel multifunctional conjugated polymers, [poly(p -phenylene)s and poly(bithienylene-phenylene)s with (R)- and (S)-configurations], which have fluorescence, chirality, and photoresponsive properties, have been designed and synthesized. The polymers are composed of ,-conjugated main chains, where poly(p -phenylene) and poly(bithienylene-phenylene) are fluorescence moieties, and the side chains of the photochromic dithienylethene moiety are linked with chiral alkyl groups. The polymer films exhibit right- or left-handed circularly polarized fluorescence (CPF) and also show reversible quenching and emitting behaviors as a result of photochemical isomerization of the dithienylethene moiety upon irradiation with ultraviolet and visible light. This is the first report realizing the reversible switching of CPF using chirality and photoresponsive properties. [source]

Highly Emitting Neutral Dinuclear Rhenium Complexes as Phosphorescent Dopants for Electroluminescent Devices

Matteo Mauro
Abstract A series of neutral, dinuclear, luminescent rhenium(I) complexes suitable for phosphorescent organic light emitting devices (OLEDs) is reported. These compounds, of general formula [Re2(µ -Cl)2(CO)6(µ -1,2-diazine)], contain diazines bearing alkyl groups in one or in both the , positions. Their electrochemical and photophysical properties are presented, as well as a combined density functional and time-dependent density functional study of their geometry, relative stability and electronic structure. The complexes show intense green/yellow emissions in toluene solution and in the solid state and some of the complexes possess high emission quantum yields (,,=,0.18,0.22 for the derivatives with disubstituted diazines). In butyronitrile glass, at 77,K, due to the charge transfer character of the lowest (emitting) excited state, strong blue shift of the emission is observed, accompanied by a strong increase in the lifetime values. The highest-performing emitting complex, containing cyclopentapyridazine as ligand, is tested in a polymer-based light-emitting device, with poly(9-vinylcarbazole) as matrix, as well as in a device obtained by vacuum sublimation of the complex in the 2,7-bis(diphenylphosphine oxide)-9-(9-phenylcarbazol-3-yl)-9-phenylfluorene (PCF) matrix. This represents the first example of devices obtained with a rhenium complex which can be sublimed and is solution processable. Furthermore, the emission is the bluest ever reported for electrogenerated luminescence for rhenium complexes. [source]

Material Solubility-Photovoltaic Performance Relationship in the Design of Novel Fullerene Derivatives for Bulk Heterojunction Solar Cells

Pavel A. Troshin
Abstract The preparation of 27 different derivatives of C60 and C70 fullerenes possessing various aryl (heteroaryl) and/or alkyl groups that are appended to the fullerene cage via a cyclopropane moiety and their use in bulk heterojunction polymer solar cells is reported. It is shown that even slight variations in the molecular structure of a compound can cause a significant change in its physical properties, in particular its solubility in organic solvents. Furthermore, the solubility of a fullerene derivative strongly affects the morphology of its composite with poly(3-hexylthiophene), which is commonly used as active material in bulk heterojunction organic solar cells. As a consequence, the solar cell parameters strongly depend on the structure and the properties of the fullerene-based material. The power conversion efficiencies for solar cells comprising these fullerene derivatives range from negligibly low (0.02%) to considerably high (4.1%) values. The analysis of extensive sets of experimental data reveals a general dependence of all solar cell parameters on the solubility of the fullerene derivative used as acceptor component in the photoactive layer of an organic solar cell. It is concluded that the best material combinations are those where donor and acceptor components are of similar and sufficiently high solubility in the solvent used for the deposition of the active layer. [source]

Synthesis of Oxygen-Containing Spirobipyrrolidinium Salts for High Conductivity Room Temperature Ionic Liquids

Seiichiro Higashiya
Abstract Synthesis of ionic liquids (IL) based on oxygen-containing spirobipyrrolidinium salts with BF4, BF3C2F5, and NTf2 as counterions was undertaken. Their physical and electrochemical properties were evaluated for suitability for Room Temperature Ionic Liquids (RTIL) application. Reduction in melting point occurred upon exchange of C(2) by an O-atom of spirobipyrrolidinium, without sacrificing the electrochemical stability; while introduction of alkyl groups between the N- and O-atoms led to incorporation of asymmetry, and hence reduced the melting points, and viscosity. [source]

New Low-Molecular-Mass Gelators Based on L -Lysine: Amphiphilic Gelators and Water-Soluble Organogelators

Masahiro Suzuki
The new L -lysine alkali-metal salts 1,5 (M+=Na+ and K+) with different alkyl groups at the N, -position were easily synthesized, and their hydro- and organogelation properties were investigated. All compounds were H2O-soluble, and some salts, especially the potassium salts, functioned as a hydrogenator that could gel water below 2 wt-%. These salts also had organogelation abilities for many organic solvents. [source]

Oligodeoxynucleotide Duplexes Containing (5,S)-5,- C -Alkyl-Modified 2,-Deoxynucleosides: Can an Alkyl Zipper across the DNA Minor-Groove Enhance Duplex Stability?

Huldreich Trafelet
A series of oligonucleotides containing (5,S)-5,- C -butyl- and (5,S)-5,- C -isopentyl-substituted 2,-deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl-zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA-duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I,III, Fig.,2) could experimentally be realized and their duplex-forming properties analyzed by UV-melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5,3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type- III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B-DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type- II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type- III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl-zipper formation presumably by loss of structured H2O in the minor groove. [source]

Allylsilane-Modified Amino Acids from the Claisen Rearrangement

Mustafa Mohamed
The Claisen rearrangement of the N -protected, silylated allyl glycinates 11 and 12 led to the formation of allyl/silyl-functionalized amino acids 13 and 14 in yields up to 80%. The diastereoisomer ratio varied from 2,:,1 to 29,:,1 for 11mb, and from 2,:,1 to 46,:,1 (syn/anti) for 12mb, depending on reaction conditions, as shown by X-ray crystallographic analysis of 14mb. The relationship between the size of the alkyl groups on the chlorosilane reagent (Me2R,SiCl, R,=Cl, Me, t -Bu, Ph) used as an enolate trap and the observed stereoselectivity was investigated in the case of the Ireland,Claisen variant. Me3SiCl gave the best results. However, the size of the alkyl groups on the silylated ester (Me2R,Si, R=Me, t -Bu, Ph, i-Pr) did not exert a significant effect on the diastereoselectivity or yield of the rearrangement. [source]

Kinetics and mechanism of the oxidative regeneration of carbonyl compounds from oximes by pyridinium bromochromate

Pradeep K. Sharma
The oxidative deoximination of several aldo- and keto-oximes by pyridinium bromochromate (PBC), in dimethylsulfoxide, exhibited a first-order dependence on both the reductant (oxime) and the oxidant (PBC). The oxidation of ketoximes is slower than that of aldoximes. The rates of oxidation of aldoximes correlated well in terms of the Pavelich,Taft dual substituent-parameter equation. The low positive value of polar reaction constant indicated a nucleophilic attack by a chromate-oxygen on the carbon. The reaction is subject to steric hindrance by the alkyl groups. The reaction of acetaldoxime has been studied in 19 different organic solvents. The solvent effect has been analyzed by Taft's and Swain's multiparametric equations. A mechanism involving the formation of a cyclic intermediate, in the rate-determining step, has been proposed. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 364,368, 2006 [source]

Use of associating polymers as multifunctional thickeners: studies of Their structure in aqueous solutions via nmr, qels, fluorescence, And rheology measurements

Katsunori Yoshida
The solution properties of an associating polymer were studied by NMR, quasi-elastic light scattering (QELS), fluorescence, and rheology measurements. An associative thickening (AT) polymer was designed having a nonionic poly(ethylene oxide) backbone with long alkyl chains at both ends to achieve high viscosity even at relatively high salt concentrations and over a wide pH range. This study focuses on the associative state of the polymer in aqueous solutions at various polymer concentrations. In a fluorescence probe study using pyrene a spectral change in the I3/I1 ratio was observed for pyrene at a polymer concentration (Cp) of 3 x 10 -4%, indicating an apparent critical concentration (cmc) of the amphiphilic polymer. The viscosity, self-diffusion coefficient (Dsel), and hydrodynamic size (Rh) distribution measurements at various Cp all suggest that there is a second transition at Cp, 0.4%. Although we observed the discontinuity in viscosity, Dsel, and Rh at Cp, 0.4%, no changes in the relaxation times (T1 and T2) were recognized for either the alkyl chain or the ethylene oxide moiety of the polymer at C p= 0.1,1%. These data suggest that there are no structural changes or phase transitions at Cp, 0.4%, but that intermicellar networks are presumably formed by bridging of the end alkyl groups of the polymer, which is driven by hydrophobic forces. Because the polymer forms networks by hydrophobic interaction and the polymer itself is nonionic, the viscosity of the polymer solution was influenced very little by either the addition of salt or a pH change, as would be expected. The dynamic viscoelastic study revealed that the polymer solution exhibits a single mode Maxwell type relaxation behavior with a terminal relaxation time of about 0.61 s, which imparts a unique flow appearance to the polymer solutions. The time course measurements of the dynamic elastic modulus of the stratum corneum revealed that the polymer has excellent potential for skin softening. It was concluded that the associative thickening polymer not only is a useful thickener with a salt and pH tolerance but also has beneficial skincare effects. [source]

Asymmetric Lithiation of Boron Trifluoride-Activated Aminoferrocenes: An Experimental and Computational Investigation

Costa Metallinos
Abstract Tertiary aminoferrocenes complexed to boron trifluoride (BF3) are shown to undergo asymmetric lithiation with alkyllithiums in the presence of bulky chiral 1,2-diaminocyclohexane ligands. This reaction represents the first BF3 -activated asymmetric lithiation of a prochiral aromatic amine and the first such transformation to be mediated by a chiral diamine other than (,)-sparteine. The process provides rapid access to a broad range of enantiomerically enriched 2-substituted-1-aminoferrocenes, including derivatives with uncommon substitution patterns that are of interest in catalysis. The enantioselectivity of the process is high enough (87:13 to 91:9 er) to allow for isolation of single enantiomers of several products after simple recrystallization as either the free aminoferrocenes or their ammonium fluoroborate salts. Both antipodes of the planar chiral 2-substituted-1-aminoferrocene products are accessible, as confirmed by single crystal X-ray diffraction analysis of two compounds with opposite relative stereochemistry. Single-point calculation of thirty-two different transition states of the reaction at the M06-2X/6-311+g(2d,2p) level produced a computational model that correctly predicted both the sense and extent of chiral induction. Three factors appeared to play important roles in determining enantioinduction during lithiation of BF3 -complexed tertiary aminoferrocenes: (i) the maintenance of a highly organized eight-membered ring transition state; (ii) the existence of a strong Li,,,F contact which placed the chiral diamine ligand in close proximity to the ferrocene substrate; (iii) the orientation of the sterically demanding N -alkyl groups of the chiral diamine additives, either away or towards, the aminoferrocene and the alkyllithium. The model may serve as a predictive tool for the rational design of new ligands for this and related asymmetric lithiations. [source]

Stille Reactions with Tetraalkylstannanes and Phenyltrialkylstannanes in Low Melting Sugar-Urea-Salt Mixtures

Giovanni Imperato
Abstract The transfer of simple alkyl groups in Stille reactions usually requires special solvents (HMPA) or certain organotin reagents (stannatranes, monoorganotin halides) to be efficient. Using low-melting mixtures of sugar, urea and inorganic salt as solvent, a fast and efficient palladium-catalyzed alkyl transfer with tetraalkyltin reagents was observed. The high polarity and nucleophilic character of the solvent melt promotes the reaction. Stille biaryl synthesis using electron-poor and electron-rich aryl bromides proceeds with quantitative yields in the sugar-urea-salt melt. Catalyst loading may be reduced to 0.001 mol,% and the catalyst melt mixture remains active in several reaction cycles. Showing the same or improved performance for Stille reactions than organic solvents and allowing a very simple work up, sugar-urea-salt melts are a non-toxic and cheap alternative reaction medium available in bulk quantities for the catalytic process. [source]

Facile regiospecific syntheses of N -,,N -1(,)-dialkyl-l-histidines

Surendra Kumar Nayak
Two diverse methodologies describe the first synthesis of suitably protected N -,,N -1(,)-dialkyl-Lhistidine derivatives. Synthesis of suitably protected N -,,N -1(,)-dialkyl-L-histidines 7-9 containing different alkyl groups at the N -, and N -1(,) positions was achieved in four steps starting from L-histidine methyl ester. Whereas, in the one-step alternate route N -,-Boc-L-histidine methyl ester upon direct and simultaneous N -, and N -1(,) alkylation with various alkyl halides in the presence of sodium hydride in DMF easily afforded N -,,N -1(,)-dialkyl-L-histidines 14 containing identical alkyl group at the N -, and N -1(,) positions in high yields. Both procedures allowed facile entry to methyl and other higher alkyl groups at the N -,-position of the histidine ring [source]

Millisecond catalytic reforming of monoaromatics over noble metals

AICHE JOURNAL, Issue 4 2010
C. M. Balonek
Abstract The millisecond autothermal reforming of benzene, toluene, ethylbenzene, cumene, and styrene were independently studied over five noble metal-based catalysts: Pt, Rh, Rh/,-Al2O3, Rh,Ce, and Rh,Ce/,-Al2O3, as a function of carbon-to-oxygen feed ratio. The Rh,Ce/,-Al2O3 catalyst exhibited the highest feedstock conversion as well as selectivities to both synthesis gas and hydrocarbon products (lowest selectivities to H2O and CO2). Experimental results demonstrate a high stability of aromatic rings within the reactor system. Benzene and toluene seem to react primarily heterogeneously, producing only syngas and combustion products. Ethylbenzene and cumene behaved similarly, with higher conversions than benzene and toluene, and high product selectivity to styrene, likely due to homogeneous reactions involving their alkyl groups. Styrene exhibited low conversions over Rh,Ce/,-Al2O3, emphasizing the stability of styrene in the reactor system. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]

New fluorene-based copolymers containing oxadiazole pendant groups: Synthesis, characterization, and polymer stability

Dmitrij Bondarev
Abstract A series of fluorene-based copolymers containing hole blocking/electron transporting diphenyloxadiazole units were synthesized by means of Suzuki-Miyaura coupling of selected aromatic dibromo- and diboronato- derivatives catalyzed with a Pd(PPh3)4 catalyst. All of the copolymers with various composition of main-chain units were characterized by SEC chromatography, NMR, UV,vis, fluorescence and IR spectroscopy, and DSC. The emission stability of fluorene copolymers was improved by the replacement of alkyl groups on the C-9 carbon of fluorene with aryl groups or by the incorporation of anthracene units into the copolymer main chain. A comparison of luminescence properties of pristine and annealed thin layers of studied copolymers was performed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4532,4546, 2009 [source]

Electrospray ionization mass spectrometric study of end-groups in peroxydicarbonate-initiated radical polymerization

Michael Buback
Abstract Initiation by diethyl peroxydicarbonate (E-PDC), di- n -tetradecyl peroxydicarbonate (nTD-PDC), di- n -hexadecyl peroxydicarbonate (nHD-PDC), and di-2-ethylhexyl peroxydicarbonate (2EH-PDC) of free-radical polymerizations of methyl methacrylate in benzene solution was studied by end-group analysis via electrospray ionization mass spectrometry (ESI-MS). Unambiguous assignment of ESI-MS peaks allows for identification of the type of radical that starts chain growth. In case of initiation by dialkyl peroxydicarbonates with linear alkyl groups, almost exclusively alkoxy carbonyloxyl species, which are the primary fragments from initiator decomposition, occur as end-groups. With 2EH-PDC, however, both the primary 2-ethylhexoxy carbonyloxyl fragment and a second moiety, which is formed by decarboxylation of the 2-ethylhexoxy carbonyloxyl radical, are clearly observed as end-groups. The decarboxylation process is described by a concerted mechanism which involves a 1,5-hydrogen shift reaction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6071,6081, 2008 [source]

Preparation of novel acrylamide-based thermoresponsive polymer analogues and their application as thermoresponsive chromatographic matrices

Yoshikatsu Akiyama
Abstract New thermoresponsive polymers based on poly(N -(N, -alkylcarbamido)propyl methacrylamide) analogues were designed with increased hydrophobic content to facilitate temperature-dependent chromatographic separations of peptides and proteins from aqueous mobile phases. These polymer solution exhibited a lower critical solution temperature (LCST) when the alkyl group is methyl, ethyl, isopropyl, propyl, butyl, and isobutyl. However, larger alkyl groups such as hexyl and phenyl were not soluble in aqueous solutions at any temperature. Phase transition temperatures were lower for larger alkyl groups and increased with decreasing polymer molecular weight and concentration in solution. LCST dependence on polymer molecular weight and concentration is more significant compared with well-studied poly(N -isopropylacrylamide) (PIPAAm). Partition coefficient (log P) values for N -(N, -butylcarbamide)propylmethacrylamide and N -(N, -isobutylcarbamide)propyl methacrylamide (iBuCPMA) monomers are larger than that for IPAAm monomer, suggesting higher hydrophobicity than IPAAm. Chromatographic evaluation of poly(N -(N, -isobutylcarbamide)propyl methacrylamide) (PiBuCPMA) grafted silica particles in aqueous separations revealed larger k, values for peptides, insulin, insulin chain B, and angiotensin I than PIPAAm-grafted silica beads. In particular, k, values for insulin obtained from PiBuCPMA-grafted silica separations were much larger than those from PIPAAm-grafted surface separations, indicating that PiBuCPMA should be more hydrophobic than PIPAAm. These results support the introduction of alkylcarbamido groups to efficiently increase thermoresponsive polymer hydrophobicity of poly(N -alkylacrylamides) and poly(N -alkylmethacrylamides). Consequently, poly(N -(N, -alkylcarbamido)propyl methacrylamide) analogues such as PiBuCPMA and poly(N -(N, -alkylcarbamido)alkylmehacrylamide) are new thermoresponsive polymers with appropriate hydrophobic partitioning properties for protein and peptide separations in aqueous media, depending on selection of their alkyl groups. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5471,5482, 2008 [source]

Chain transfer to ionic liquid in an anionic polymerization of methyl methacrylate

Tadeusz Biedro
When methyl methacrylate is polymerized with alkyllithium as initiator in imidazolium ionic liquids, low molecular weight polymers are formed in high yield. The head-groups are, however, not those alkyl groups that are present in alkyllithium, but predominantly those that are originally present at 1-position in imidazolium cation indicating extensive chain transfer to imidazolium ionic liquid. [source]

A variety of poly(m -benzamide)s with low polydispersities from inductive effect-assisted chain-growth polycondensation

Tomoyuki Ohishi
Abstract Chain-growth polycondensation of 3-(alkylamino)benzoic acid alkyl esters 1 was investigated for obtaining poly(m -benzamide)s with defined molecular weights and low polydispersities. Polymerization conditions were first studied to find that ethyl 3-(octylamino)benzoate (1b) polymerized in a chain polymerization manner in the presence of lithium 1,1,1,3,3,3-hexamethyldisilazide (LiHMDS) as a base and phenyl 4-methylbenzoate (2b) as an initiator in THF at 0 °C. The molecular weight of the polymer was controlled by the feed ratio of monomer to initiator. The polymerization of 1c,i with a variety of N -alkyl groups was then carried out under the established conditions to yield well-defined poly(m -benzamide)s, which showed higher solubility than those of the corresponding poly(p -benzamide)s. Furthermore, the 4-octyloxybenzyl group on the amide nitrogen in poly1i was removed by treatment with trifluoroacetic acid (TFA) to give N -unsubstituted poly(m -benzamide) (poly1j) with a low polydispersity, which is soluble in DMAc and DMSO, contrary to the para-substituted counterpart. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4990,5003, 2006 [source]

Vinyl polymerization of norbornene by bis(nitro-substituted-salicylaldiminate)nickel(II)/methylaluminoxane catalysts

Carlo Carlini
Abstract The polymerization of norbornene has been investigated in the presence of different bis(salicylaldiminate)nickel(II) precursors activated by methylaluminoxane. These systems are highly active in affording nonstereoregular vinyl-type polynorbornenes (PNBs) with high molecular weights. The productivity of the catalytic systems is strongly enhanced (up to 35,000 kg of PNB/mol of Ni × h) when electron-withdrawing nitro groups are introduced on the phenol moiety. On the contrary, the presence of bulky alkyl groups on the N -aryl moiety of the ligand does not substantially affect the activity or characteristics of the resulting PNBs. The catalytic performances are also markedly influenced by the reaction parameters, such as the nature of the solvent, the reaction time, and the monomer/Ni and Al/Ni molar ratios. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1514,1521, 2006 [source]

Effect of aniline formaldehyde resin on the conjugation length and structure of doped polyaniline: Spectral studies

Ko-Shan Ho
Abstract A DBSA (n -dodecylbenzene sulfate)-complexed aniline formaldehyde [AF(DBSA)1.0] was successfully synthesized with excess aniline (compared with formaldehyde) in the presence of n -dodecylbenzene sulfonic acid (HDBSA), which was complexed with aniline monomer before polymerization. The resin was carefully characterized with 1H and 13C NMR, electron spectroscopy for chemical analysis, and Fourier transform infrared and was demonstrated to be a polymer in which anilines were all complexed with HDBSA and became anilinium salts. A drastic decrease of the maximum absorption wavelength (ultraviolet,visible spectra) of DBSA-doped polyaniline [PANI(DBSA)0.5] was found when AF(DBSA)1.0 was mixed, and this resulted from the reduced conjugation length. A similar effect on PANI(DBSA)0.5 was found when free HDBSAs were mixed with PANI(DBSA)0.5. Visual inspection with an optical microscope revealed that PANI(DBSA)0.5/AF(DBSA)1.0 gave uniform morphologies in various compositions, showing possible miscibility for this system. X-ray diffraction patterns of PANI(DBSA)0.5/AF(DBSA)1.0 showed that the layered structure of PANI(DBSA)0.5 was still present but became shorter in the polyblend because of the presence of AF(DBSA)1.0. Solid-state 13C NMR spectra revealed that the reduced conjugation length was derived from the interaction of alkyl groups between HDBSA, complexed DBSA, and dopant DBSAs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3116,3125, 2005 [source]

Synthesis, characterization, and thermal properties of ladderlike polyepoxysiloxanes

Yuhui Lin
Abstract Starting from trichlorosilanes and using 1,4-phenylenediamine as a template, we have synthesized some ladderlike poly(glycidyl- co -alkyl/aryl)siloxanes (polyepoxysiloxanes or polyepoxies for short). The structures of copolymers were confirmed through IR, 1H NMR, elemental analyses, and gel permeation chromatography. Curing behaviors of these polyepoxies in the absence and presence of a curing agent have been studied with DSC. It was shown that these epoxies could be cured without any curing agent. Copolymers having aromatic groups showed higher curing reactivity than those having alkyl groups. The experimental results also demonstrate that the curing reaction occurred solely via epoxy functionality, not via the condensation reaction of the hydroxy groups located at the end of polymer main chains. The thermal stability of the cured polymers was examined by thermogravimetric analysis. The results confirm that polyepoxies with aromatic groups had better thermal stability than those with alkyl groups. It was also found that polyepoxies cured with a diamine have a higher thermal stability than those cured in the absence of a curing agent. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2215,2222, 2001 [source]