Alkyl Ethers (alkyl + ether)

Distribution by Scientific Domains


Selected Abstracts


ChemInform Abstract: A Novel B(C6F5)3 -Catalyzed Reduction of Alcohols and Cleavage of Aryl and Alkyl Ethers with Hydrosilanes.

CHEMINFORM, Issue 5 2001
Vladimir Gevorgyan
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


pH-induced alterations in stratum corneum properties

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 3 2003
K. P. Ananthapadmanabhan
Synopsis Skin-cleansing compositions based on alkyl carboxylates (soaps) have a higher irritation potential than those based on syndet surfactants such as alkyl isethionates or alkyl ether sulphates. Contributing factors include inherent differences in the irritation potential of soaps and syndet surfactants, pH-induced changes in surfactant solution chemistry, and the direct effects of pH on the physical properties of the stratum corneum (SC). Past work has not directly addressed the effect of solution pH on the SC itself and its potential role in cleanser-induced skin irritation. In the current work, alterations to SC properties induced by buffered pH solutions and two strongly ionizable surfactants, sodium dodecyl sulphate and sodium lauryl ether sulphate, at different pH values are measured. By utilizing optical coherence tomography (OCT) and infrared (IR) spectroscopy we have directly measured physical changes in SC proteins and lipids. Our results indicate that SC swelling, which reflects alterations to SC structural proteins, is increased significantly at pH 10, compared to pH 4 and 6.5. The transition temperature (Tm) of SC lipids is found to increase at pH 10, compared to pH 4 and 6.5, suggesting a more rigid SC lipid matrix. Surfactants cause a further increase in swelling and lipid rigidity. Some aspects of what these results mean for SC physical properties as well as their implications to potential mechanisms of surfactant-induced skin irritation are discussed. Résumé Les compositions nettoyantes pour la peau à base d'alkyl carboxylates (savons) ont un potentiel irritant supérieur à celles à base de syndet tensioactifs tels que les alkyl isothionates ou les alkyl ether sulfates. Les facteurs en cause comprennent les différences de potentiel irritant inhérentes aux savons et aux syndet tensioactifs, les modifications de la chimie de la solution de tensioactif dues aux pH, et les effets directs du pH sur les propriétés physiques de la couche cornée (CC). Les travaux antérieurs n'ont pas traité directement l'effet du pH de la solution sur la couche cornée elle-même et son rôle potentiel dans l'irritation de la peau due à la solution nettoyante. Dans la présente étude on a mesuré les altérations des propriétés de la CC causées par des solutions à pH tamponné et deux tensioactifs fortement ionisables, le dodecyl sulfate de sodium et le lauryl ether sulfate de sodium, à différentes valeurs de pH. En utilisant la tomographie optique (OCT) et la spectroscopie à infrarouge (IR) on a mesuré directement les modifications physiques des protéines et des lipides de la CC. Nos résultats montrent que le gonflement de la CC, qui traduit des altérations des protéines structurales de la CC, augmente significativement à pH 10, par comparaison au pH 4 et 6.5. On observe que la température de transition (Tm) des lipides de la CC augmente à pH 10, par comparaison au pH 4 et 6.5, suggérant une matrice lipidique de la CC plus rigide. Les tensioactifs provoquent une augmentation plus importante du gonflement et de la rigidité lipidique. On aborde certains aspects de la signification de ces résultats vis-à-vis des propriétés physiques de la couche cornée ainsi que leurs conséquences sur les mécanismes potentiels de l'irritation de la peau causée par les tensioactifs. [source]


Cyclic Quaternary Ammonium Ionic Liquids with Perfluoroalkyltrifluoroborates: Synthesis, Characterization, and Properties

CHEMISTRY - A EUROPEAN JOURNAL, Issue 8 2006
Zhi-Bin Zhou Dr.
Abstract New cyclic quaternary ammonium salts, composed of N -alkyl(alkyl ether)- N -methylpyrrolidinium, -oxazolidinium, -piperidinium, or -morpholinium cations (alkyl=nC4H9, alkyl ether=CH3OCH2, CH3OCH2CH2) and a perfluoroalkyltrifluoroborate anion ([RFBF3],, RF=CF3, C2F5, nC3F7, nC4F9), were synthesized and characterized. Most of these salts are liquids at room temperature. The key properties of these salts,phase transitions, thermal stability, density, viscosity, conductivity, and electrochemical windows,were measured and compared to those of their corresponding [BF4], and [(CF3SO2)2N], salts. The structural effect on all the above properties was intensively studied in terms of the identity of the cation and anion, variation of the side chain in the cation (i.e., alkyl versus alkyl ether), and change in the length of the perfluoroalkyl group (RF) in the [RFBF3], ion. The reduction of Li+ ions and reoxidation of Li metal took place in pure N -butyl- N -methylpyrrolidinium pentafluoroethyltrifluoroborate as the supporting electrolyte. Such comprehensive studies enhance the knowledge necessary to design and optimize ionic liquids for many applications, including electrolytes. Some of these new salts show desirable properties, including low melting points, high thermal stabilities, low viscosities, high conductivities, and wide electrochemical windows, and may thus be potential candidates for use as electrolytes in high-energy storage devices. In addition, many salts are ionic plastic crystals. [source]


Methyl- tert -hexyl ether and methyl- tert -octyl ether as gasoline oxygenates: Anticipating widespread risks to community water supply wells,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2007
Jeff Snelling
Abstract The widespread contamination of groundwater resources associated with methyl- tert -butyl ether (MtBE) use has prompted a search for replacement oxygenates in gasoline. Among the alternatives currently under development are higher methyl- tert -alkyl ethers, notably methyl- tert -hexyl ether (MtHxE) and methyl- tert -octyl ether (MtOcE). As was the case with MtBE, the introduction of these ethers into fuel supplies guarantees their migration into groundwater resources. In the present study, a screening-level risk assessment compared predicted well water concentrations of these ethers to concentrations that might cause adverse effects. A physicochemical model which has been successfully applied to the prediction of MtBE concentrations in community water supply wells (CSWs) was used to predict well water concentrations of MtHxE and MtOcE. The results indicate that these ethers are likely to contaminate water supply wells at slightly lower levels than MtBE as a result of migrating from leaking underground fuel tanks to CSWs. Because very little data is available on the physicochemical and environmental properties of MtHxE and MtOcE, estimation methods were employed in conjunction with the model to predict well water concentrations. Model calculations indicated that MtHxE and MtOcE will be present in many CSWs at concentrations approaching the concentrations that have caused widespread public health concern for MtBE. Based on these results and the possibility that MtHxE and MtOcE are potential carcinogens, testing of the toxicological properties of these ethers is recommended before they are used to replace MtBE in gasoline. [source]


Collision-induced loss of AgH from Ag+ adducts of alkylamines, aminocarboxylic acids and alkyl benzyl ethers leads exclusively to thermodynamically favored product ions

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 2 2009
Mathias Schäfer
Abstract The loss of AgH from [M + Ag]+ precursor ions of tertiary amines, aminocarboxylic acids and aryl alkyl ethers is examined by deuterium labeling combined with collision activation (CA) dissociation experiments. It was possible to demonstrate that the AgH loss process is highly selective toward the hydride abstraction. For tertiary amines and aminocarboxylic acids, hydrogen originates from the ,-methylene group carrying the nitrogen function (formation of an immonium ion). In all cases examined, the most stable, i.e. the thermodynamically favored product ion is formed. In the AgH loss process, a large isotope effect operates discriminating against the loss of D. The [M + Ag]+ ion of benzyl methyl ether loses a hydride ion exclusively from the benzylic methylene group supporting the experimental finding that the AgH loss reaction selectively cleaves the weakest CH bond available. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Sulfoalkyl ether-alkyl ether cyclodextrin derivatives, their synthesis, NMR characterization, and binding of 6,-methylprednisolone

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2005
Serena Tongiani
Abstract The objective of this study is to see if random alkyl ethers of various sulfoalkyl ether cyclodextrins can be synthesized and characterized. The purpose of the alkylation was to test the hypothesis that an increase in the "height" of a cyclodextrins cavity would help in the binding/complexation of larger more structurally complex molecules. The synthesis of new cyclodextrin derivatives comprising a mixture of sulfoalkyl ether and alkyl ether substituents on the same cyclodextrin ring was performed in aqueous alkaline solutions using various sultones and alkylsulfates. The method presented provided an easy and efficient way to modify cyclodextrins avoiding the use of organic solvents and high quantities of alkylating agents and could be carried out in either a two step or "one pot" single step process. Purification was by neutralization followed by ultrafiltration. The derivatives were characterized by 1D, (1H and 13C), and a 2D NMR technique (HMQC, Heteronuclear Multiple Quantum Coherence). The combination of these techniques allowed an analysis of the degree of substitution and the site of substitution on the cyclodextrin (CD) nucleus. For both ,- and ,-CD, sulfoakylation was preferred on the 2,>,3,>,6 hydroxyls while alkylation was preferred 6,>,2,>,3. Due to the simultaneous presence of short alkyl ether chains and negatively charged sulfoalkyl ether chains, these mixed water-soluble cyclodextrin derivatives, especially those of ,-cyclodextrin, should be able to bind more complex drugs. The improved binding capacity of these new modified CDs with the model drug 6,-methylprednisolone is reported. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:2380-2392, 2005 [source]


Pyrazine Arotinoids with Inverse Agonist Activities on the Retinoid and Rexinoid Receptors

CHEMBIOCHEM, Issue 7 2009
José García
Abstract RAR and RXR agonists: A collection of pyrazine-based RAR/RXR ligands were prepared by a series of palladium catalyzed cross-coupling reactions and characterized. Structure,activity relationships were elucidated. Retinoic acid receptor (RAR) ,/,-subtype-selective and retinoid X receptor (RXR) inverse agonist activities are described for pyrazine acrylic acid arotinoid, 14,d. Heterocyclic arotinoids derived from central-region dihalogenated pyrazine scaffolds have been synthesized by consecutive halogen and/or position-selective palladium-catalyzed cross-coupling reactions. Pyrazines were further functionalized as alkyl ethers or methylamines prior to the last Pd-catalyzed reactions. Transient transactivation studies with the retinoic acid receptor (RAR) ,, ,, and , subtypes and with retinoid X receptor (RXR) , revealed distinct agonist, antagonist, and inverse agonist activities for these compounds. Of interest are the RAR,,,-selective inverse agonists with pyrazine acrylic acid structures, in particular 14,c, which is RAR,-selective, and 14,d, a pan-RAR/RXR inverse agonist with more affinity for the RAR subtypes that enhance the interaction of RAR with cognate corepressors. [source]