Home About us Contact | |||
Alkyl C (alkyl + c)
Selected AbstractsEffect of long-term combined nitrogen and phosphorus fertilizer application on 13C CPMAS NMR spectra of humin in a Typic Hapludoll of northeast ChinaEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 6 2009J. J. Zhang Summary Because of its insolubility, heterogeneity and structural complexity, humin is the least understood among the three fractions of soil humic substances. This research aimed to evaluate the long-term effect of combined nitrogen and phosphorus (NP) fertilizer addition on the chemical structure of humin under maize (Zea mays L.) monoculture in a Typic Hapludoll of northeast China. Soil samples were collected 12 and 25 years after the initiation of the fertilizer treatment. Soil humin was isolated using NaOH-Na4P2O7 extraction to remove humic and fulvic acids, which was followed by HF-HCl treatment to remove most of the inorganic minerals. Solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy was used to characterize the chemical structure of the humin isolates. Results showed that the organic carbon (C) content of humin increased after NP fertilizer addition, compared with a no-fertilizer (CK) treatment. 13C CPMAS NMR indicated that O-alkyl C and aromatic C of humin decreased, while alkyl C and the ratios of alkyl C/O-alkyl C, aliphatic C/aromatic C and hydrophobic C/hydrophilic C all increased in the NP fertilizer treatment. The long-term application of NP fertilizer changed the molecular structure of soil humin to be more alkyl and hydrophobic, and was thus beneficial to the sequestration and stability of organic C in soil. [source] Effect of organic matter applications on 13C-NMR spectra of humic acids of soilEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2008S. Dou Summary Much attention has been paid to improving soil fertility with organic matter (OM) application, which not only deals with organic wastes and protects the environment, but also maintains soil fertility and increases crop yields. Much research has also been on the effects of OM applications on the soil's physical, chemical and biological properties, but relatively less attention has been spent on humic substance (HS). In order to clarify the mechanism of improving soil fertility by applying OM, we analysed the changes of structural characteristics of humic acid (HA) from OM applications to soils by 13C-NMR, chemical analysis, thermal analysis, optical properties, IR and fluorescence spectroscopy. Samples of a brown soil (Paleudalf) and a paddy soil (an anthropogenic soil originating from Udifluvents) were collected from the plough layer of the long-term field experiment at Shenyang Agricultural University and Liaoning Provincial Alkali-Saline Soil Institute, respectively. Both field experiments included three treatments each: (i) brown soil, zero-treatment (CKbr) and two pig manure (PM) applications (O1 and O2) at annual rates of 0.9 t ha,1 and 1.8 t ha,1 of organic carbon, respectively; and (ii) paddy soil, zero-treatment (CKpad), pig manure (Op) and rice straw (Or) at annual rates of 2.62 t ha,1 and 1.43 t ha,1 of organic carbon, respectively. An incubation experiment was also carried out to test the field experiment on the brown soil, namely four treatments: zero-treatment (CKc), and three pig manure applications at rates of 30 g kg,1 (C1), 50 g kg,1 (C2) and 70 g kg,1 (C3), respectively. The total incubation was 180 days. The results indicated that number-average molecular weights (Mn), total acidity, aromaticity, excitation maximum wavelength (,Exmax), and the heat ratio of the high to moderate temperature exothermic regions (H3/H2) of the HA all decreased after OM application. The degree of activation (AD), the absorption intensity ratio of 2920 cm,1 to 1720 cm,1 in infrared spectra (IR2920/1720), alkyl C and O-alkyl C of the HA increased. The HA structure tended to become simpler and more aliphatic. [source] Near-infrared spectroscopy can predict the composition of organic matter in soil and litterJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2006Thomas Terhoeven-Urselmans Abstract The usefulness and limitations of near-infrared reflectance spectroscopy (NIRS) for the assessment of several soil characteristics are still not sufficiently explored. The objective of this study was to evaluate the ability of visible and near-infrared reflectance (VIS-NIR) spectroscopy to predict the composition of organic matter in soils and litter. Reflectance spectra of the VIS-NIR region (400,2500 nm) were recorded for 56 soil and litter samples from agricultural and forest sites. Spectra were used to predict general and biological characteristics of the samples as well as the C composition which was measured by 13C-CPMAS-NMR spectroscopy. A modified partial least-square method and cross-validation were used to develop equations for the different constituents over the whole spectrum (1st to 3rd derivation). Near-infrared spectroscopy predicted well the C : N ratios, the percentages of O-alkyl C and alkyl C, the ratio of alkyl C to O-alkyl C, and the sum of phenolic oxidation products: the ratios of standard deviation of the laboratory results to standard error of cross-validation (RSC) were greater than 2, the regression coefficients (a) of a linear regression (measured against predicted values) ranged from 0.9 to 1.1, and the correlation coefficients (r) were greater than 0.9. Satisfactorily (0.8 , a , 1.2, r , 0.8, and 1.4 , RSC , 2.0) assessed were the contents of C, N, and production of DOC, the percentages of carbonyl C and aromatic C and the ratio of alkyl C to aromatic C. However, the N-mineralization rate and the microbial biomass were predicted unsatisfactorily (RSC < 1.4). The good and satisfactory predictions reported above indicate a marked usefulness of NIRS in the assessment of biological and chemical characteristics of soils and litter. [source] A comparison of two methods for the isolation of free and occluded particulate organic matterJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2005Angelika Kölbl Abstract Various methods exist for the isolation of particulate organic matter (POM), one of the soil-organic-matter (SOM) fractions reacting most sensitive on land-use or soil-management changes. A combination of density separation and ultrasonic treatment allows to isolate two types of POM: (1) free POM and (2) POM occluded in soil aggregates. POM fractions are closely linked to their biochemical function for the formation and stabilization of aggregates, therefore methods using different aggregate sizes may result in different POM fractions isolated. We evaluated two physical fractionation procedures to reveal whether they yield different POM fractions with respect to amount and composition, using grassland and arable soils with sandy-loam to sandy,clay-loam texture and thus low macroaggregate stability. Method I used air-dried aggregates of <2.0 mm size and a low-energy sonication for aggregate disruption, method II used field-moist aggregates <6.3 mm and a high-energy,sonication procedure for aggregate disruption. POM fractions were analyzed by elemental analysis (C, N) and CPMAS 13C-NMR spectroscopy. With both methods, about similar proportions of the SOM are isolated as free or occluded POM, respectively. The free- and occluded-POM fractions obtained with method I are also rather similar in C and N concentration and composition as shown by 13C-NMR spectroscopy. Method II isolates a free- and occluded-POM fraction with significantly different C and N concentrations. NMR spectra revealed significant differences in the chemical composition of both fractions from method II, with the occluded POM having lower amounts of O-alkyl C and higher amounts of aryl C and alkyl C than the free POM. Due to the use of larger, field-moist aggregates with minimized sample pretreatment, two distinctly different POM fractions are isolated with method II, likely to be more closely linked to their biochemical function for the formation and stabilization of aggregates. High-energy sonication as in method II also disrupts small microaggregates <63 µm and releases fine intraaggregate POM. This fraction seems to be a significant component of occluded POM, that allows a differentiation between free and occluded POM in sandy soils with significant microaggregation. It can be concluded, that microaggregation in arable soils with sandy texture is responsible for the storage of a more degraded occluded POM, that conversely supports the stabilization of fine microaggregates. Ein Vergleich zweier Methoden zur Isolierung von freier und okkludierter partikulärer organischer Substanz Partikuläres organisches Material (POM) wird im Hinblick auf die Landnutzung als sensitive Fraktion der organischen Bodensubstanz (SOM) angesehen, aber die unterschiedlichen Methoden seiner Isolierung erschweren den Vergleich zwischen verschiedenen Studien. Wir haben zwei physikalische Fraktionierungsmethoden ausgewertet, um zu zeigen, ob sie im Hinblick auf Menge und Zusammensetzung zu unterschiedlichen POM-Fraktionen führen. Hierfür wurden Proben von Grünland- und Ackerböden verwendet. Für Methode I wurden luftgetrocknete Aggregate der Größe <2 mm verwendet, zu deren Zerstörung eine Ultraschallbehandlung mit geringem Energieeintrag eingesetzt wurde. Für Methode II wurden feldfeuchte Aggregate der Größe <6.3 mm und eine Ultraschallbehandlung mit vergleichsweise hoher Energie zur Aggregatzerstörung herangezogen. Mit beiden Methoden konnten zwei POM-Gruppen gewonnen werden: (1) freies POM und (2) in Bodenaggregaten eingeschlossenes POM. Die POM-Fraktionen wurden mittels Elementanalyse (C, N) und CPMAS- 13C-NMR,Spektroskopie untersucht. Methode I zeigte im Hinblick auf Menge und Zusammensetzung nur sehr geringe Unterschiede zwischen freien und okkludierten POM-Fraktionen. Methode II isolierte freie und okkludierte POM-Fraktionen mit signifikant unterschiedlichen C- und N-Konzentrationen. Auch die NMR-Spektren zeigten Unterschiede in der chemischen Zusammensetzung der mit Methode II gewonnenen Fraktionen, die sich in signifikant geringeren O-Alkyl-C-Gehalten bei höheren Aryl-C- und Alkyl-C-Gehalten des okkludierten POM nachweisen ließen. Die Verwendung von größeren, feldfeuchten Aggregaten und die Minimierung der Probenvorbehandlung führt zu einer besseren Differenzierung beider POM-Fraktionen, die wahrscheinlich ihre biologische Funktion besser widerspiegelt. Zusätzlich führt eine Ultraschall-Behandlung mit hohem Energieeintrag zur Zerstörung von kleinen Mikroaggregaten <63 µm und damit zur Freisetzung von feinem Intraaggregat-POM. Diese Fraktion scheint in sandigen Böden mit niedriger Makroaggregat-Stabilität aussagekräftiger zwischen freier und okkludierter POM unterscheiden zu können. Folglich ist eine an das Bodenmaterial angepasste Probenvorbehandlung und Fraktionierungsmethode entscheidend, um eine präzise Charakterisierung der POM-Fraktionen zu gewährleisten. [source] Crystallographic rationalization of the reactivity and spectroscopic properties of (2R)- S -(2,5-dihydroxyphenyl)cysteineACTA CRYSTALLOGRAPHICA SECTION C, Issue 4 2010Gabriele Kociok-Köhn At 150,K, the title compound, C9H11NO4S, crystallizes in the orthorhombic form as a zwitterion and has a low gauche conformation [, = ,46.23,(16)°] for an acyclic cysteine derivative. A difference in bond length is observed for the alkyl C,S bond [1.8299,(15),Å] and the aryl C,S bond [1.7760,(15),Å]. The ,NH3+ group is involved in four hydrogen bonds, two of which are intermolecular and two intramolecular. The compound forms an infinite three-dimensional network constructed from four intermolecular hydrogen bonds. Characterization data (13C NMR, IR and optical rotation) are reported to supplement the incomplete data disclosed previously in the literature. [source] |