Alkyl Aldehyde (alkyl + aldehyde)

Distribution by Scientific Domains


Selected Abstracts


Zinc Metal Promoted Selective ,-Haloacylation and gem-Bisacylation of Alkyl Aldehydes in the Presence of Chlorotrimethylsilane.

CHEMINFORM, Issue 31 2004
Yoshio Ishino
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


SuperQuat N-Acyl-5,5-dimethyloxazolidin-2-ones for the Asymmetric Synthesis of ,-Alkyl and ,-Alkyl Aldehydes.

CHEMINFORM, Issue 50 2003
Steven D. Bull
Abstract For Abstract see ChemInform Abstract in Full Text. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 13 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 10 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 8 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 7 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 6 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 5 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 4 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 2-3 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Cover Picture: (Adv. Synth.

ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1 2010
Catal.
The cover picture, provided by David W.,C. MacMillan, shows a dual-catalytic aldehyde alkylation via photoredox organocatalysis in which electrophilic radicals (derived from the photoredox cycle; above) combine with facially biased enamine intermediates (derived from the organocatalytic cycle; below). The photoredox catalyst, Ru(bpy)32+ readily accepts a photon from a visible light source to populate the *Ru(bpy)32+ metal-to-ligand charge transfer (MLCT) excited state, eventually enabling single-electron transfer (SET) with an alkyl halide to furnish the electron-deficient alkyl radical. Simultaneously, the organocatalytic cycle is initiated upon condensation of the imidazolidinone catalyst (inset) exclusively with a non-substituted aldehyde to form a stereochemically-defined enamine. The two activation pathways merge in the key alkylation step via rapid addition of the electrophilic radical to the ,-rich olefin followed by a series of concerted steps which return the organocatalyst and photocatalyst to their respective cycles and render the optically enriched ,-alkyl aldehyde. [source]


Molecular mechanics (MM4) calculations on carbonyl compounds part I: aldehydes

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 13 2001
Charles H. Langley
Abstract Aliphatic aldehydes have been studied with the aid of the MM4 force field. The structures, moments of inertia, vibrational spectra, conformational energies, barriers to internal rotation, and dipole moments have been examined for six compounds (nine conformations). MM4 parameters have been developed to fit the indicated quantities to the wide variety of experimental data. Ab initio (MP2) and density functional theory (B3LYP) calculations have been used to augment and/or replace experimental data, as appropriate. Because more, and to some extent, better, data have become available since MM3 was developed, it was anticipated that the overall accuracy of the information calculated with MM4 would be better than with MM3. The best single measure of the overall accuracy of a force field is the accuracy to which the moments of inertia of a set of compounds (from microwave spectroscopy) can be reproduced. For all of the 20 moments (seven conformations) experimentally known for the aldehyde compounds, the MM4 rms error is 0.30%, while with MM3, the most accurate force field presently available, the rms error over the same set is 1.01%. The calculation of the vibrational spectra was also improved overall. For the four aldehydes that were fully analyzed (over a total of 78 frequencies), the rms errors with MM4 and MM3 are 18 and 38 cm,1, respectively. These improvements came from several sources, but the major ones were separate parameters involving the carbonyl carbon for formaldehyde, the alkyl aldehydes and the ketones, and new crossterms featured in the MM4 force field that are not present in the MM3 version. 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1396,1425, 2001 [source]


ChemInform Abstract: Highly Asymmetric Michael Additions of ,,,-Disubstituted Aldehydes to ,-Nitroalkenes Promoted by Chiral Pyrrolidine,Thiourea Bifunctional Catalysts.

CHEMINFORM, Issue 37 2010
Jian-Fei Bai
Abstract Four bifunctional amine,thiourea derivatives bearing 2 catalytic sites are tested and ATC is found to be most efficient one for the asymmetric Michael addition of secondary alkyl aldehydes to (het)aryl nitroalkenes. [source]