Aldehyde Substrates (aldehyde + substrate)

Distribution by Scientific Domains


Selected Abstracts


Rhodium-Catalyzed Intermolecular Chelation Controlled Alkene and Alkyne Hydroacylation: Synthetic Scope of ,-S-Substituted Aldehyde Substrates.

CHEMINFORM, Issue 47 2006
Michael C. Willis
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


Allylation of Aldehyde and Imine Substrates with In Situ Generated Allylboronates , A Simple Route to Enatioenriched Homoallyl Alcohols

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 12 2005
Sara Sebelius
Abstract Allylation of aldehyde and imine substrates was achieved using easily available allylacetates and diboronate reagents in the presence of catalytic amounts of palladium. This operationally simple one-pot reaction has a broad synthetic scope, as many functionalities including, acetate, carbethoxy, amido and nitro groups are tolerated. The allylation reactions proceed with excellent regio- and stereoselectivity affording the branched allylic isomer. By employment of commercially available chiral diboronates enantioenriched homoallyl alcohols (up to 53,% ee) could be obtained. The mechanistic studies revealed that the in situ generated allylboronates react directly with the aldehyde substrates, however the allylation of the sulfonylimine substrate requires palladium catalysis. ( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Metabolic fate of l -lactaldehyde derived from an alternative l -rhamnose pathway

FEBS JOURNAL, Issue 20 2008
Seiya Watanabe
Fungal Pichia stipitis and bacterial Azotobacter vinelandii possess an alternative pathway of l -rhamnose metabolism, which is different from the known bacterial pathway. In a previous study (Watanabe S, Saimura M & Makino K (2008) Eukaryotic and bacterial gene clusters related to an alternative pathway of non-phosphorylated l -rhamnose metabolism. J Biol Chem283, 20372,20382), we identified and characterized the gene clusters encoding the four metabolic enzymes [l -rhamnose 1-dehydrogenase (LRA1), l -rhamnono-,-lactonase (LRA2), l -rhamnonate dehydratase (LRA3) and l -2-keto-3-deoxyrhamnonate aldolase (LRA4)]. In the known and alternative l -rhamnose pathways, l -lactaldehyde is commonly produced from l -2-keto-3-deoxyrhamnonate and l -rhamnulose 1-phosphate by each specific aldolase, respectively. To estimate the metabolic fate of l -lactaldehyde in fungi, we purified l -lactaldehyde dehydrogenase (LADH) from P. stipitis cells l -rhamnose-grown to homogeneity, and identified the gene encoding this enzyme (PsLADH) by matrix-assisted laser desorption ionization-quadruple ion trap-time of flight mass spectrometry. In contrast, LADH of A. vinelandii (AvLADH) was clustered with the LRA1,4 gene on the genome. Physiological characterization using recombinant enzymes revealed that, of the tested aldehyde substrates, l -lactaldehyde is the best substrate for both PsLADH and AvLADH, and that PsLADH shows broad substrate specificity and relaxed coenzyme specificity compared with AvLADH. In the phylogenetic tree of the aldehyde dehydrogenase superfamily, PsLADH is poorly related to the known bacterial LADHs, including that of Escherichia coli (EcLADH). However, despite its involvement in different l -rhamnose metabolism, AvLADH belongs to the same subfamily as EcLADH. This suggests that the substrate specificities for l -lactaldehyde between fungal and bacterial LADHs have been acquired independently. [source]


Characterization of cinnamyl alcohol dehydrogenase of Helicobacter pylori

FEBS JOURNAL, Issue 5 2005
An aldehyde dismutating enzyme
Cinnamyl alcohol dehydrogenases (CAD; 1.1.1.195) catalyse the reversible conversion of p -hydroxycinnamaldehydes to their corresponding alcohols, leading to the biosynthesis of lignin in plants. Outside of plants their role is less defined. The gene for cinnamyl alcohol dehydrogenase from Helicobacter pylori (HpCAD) was cloned in Escherichia coli and the recombinant enzyme characterized for substrate specificity. The enzyme is a monomer of 42.5 kDa found predominantly in the cytosol of the bacterium. It is specific for NADP(H) as cofactor and has a broad substrate specificity for alcohol and aldehyde substrates. Its substrate specificity is similar to the well-characterized plant enzymes. High substrate inhibition was observed and a mechanism of competitive inhibition proposed. The enzyme was found to be capable of catalysing the dismutation of benzaldehyde to benzyl alcohol and benzoic acid. This dismutation reaction has not been shown previously for this class of alcohol dehydrogenase and provides the bacterium with a means of reducing aldehyde concentration within the cell. [source]


Modeling of the bacterial luciferase-flavin mononucleotide complex combining flexible docking with structure-activity data

PROTEIN SCIENCE, Issue 8 2001
Leo Yen-Cheng Lin
FMN, flavin mononucleotide; FMNH2, reduced FMN Abstract Although the crystal structure of Vibrio harveyi luciferase has been elucidated, the binding sites for the flavin mononucleotide and fatty aldehyde substrates are still unknown. The determined location of the phosphate-binding site close to Arg 107 on the , subunit of luciferase is supported here by point mutagenesis. This information, together with previous structure-activity data for the length of the linker connecting the phosphate group to the isoalloxazine ring represent important characteristics of the luciferase-bound conformation of the flavin mononucleotide. A model of the luciferase,flavin complex is developed here using flexible docking supplemented by these structural constraints. The location of the phosphate moiety was used as the anchor in a flexible docking procedure performed by conformation search by using the Monte Carlo minimization approach. The resulting databases of energy-ranked feasible conformations of the luciferase complexes with flavin mononucleotide, ,-phosphopentylflavin, ,-phosphobutylflavin, and ,-phosphopropylflavin were filtered according to the structure-activity profile of these analogs. A unique model was sought not only on energetic criteria but also on the geometric requirement that the isoalloxazine ring of the active flavin analogs must assume a common orientation in the luciferase-binding site, an orientation that is also inaccessible to the inactive flavin analog. The resulting model of the bacterial luciferase,flavin mononucleotide complex is consistent with the experimental data available in the literature. Specifically, the isoalloxazine ring of the flavin mononucleotide interacts with the Ala 74,Ala 75 cis -peptide bond as well as with the Cys 106 side chain in the , subunit of luciferase. The model of the binary complex reveals a distinct cavity suitable for aldehyde binding adjacent to the isoalloxazine ring and flanked by other key residues (His 44 and Trp 250) implicated in the active site. [source]