Home About us Contact | |||
Alcohol Metabolism (alcohol + metabolism)
Selected AbstractsEffects of Variation at the ALDH2 Locus on Alcohol Metabolism, Sensitivity, Consumption, and Dependence in EuropeansALCOHOLISM, Issue 7 2006Peter A. Dickson Background: The low-activity variant of the aldehyde dehydrogenase 2 (ALDH2) gene found in East Asian populations leads to the alcohol flush reaction and reduces alcohol consumption and risk of alcohol dependence (AD). We have tested whether other polymorphisms in the ALDH2 gene have similar effects in people of European ancestry. Methods: Serial measurements of blood and breath alcohol, subjective intoxication, body sway, skin temperature, blood pressure, and pulse were obtained in 412 twins who took part in an alcohol challenge study. Participants provided data on alcohol reactions, alcohol consumption, and symptoms related to AD at the time of the study and subsequently. Haplotypes based on 5 single-nucleotide polymorphisms (SNPs) were used in tests of the effects of variation in the ALDH2 gene on alcohol metabolism and alcohol's effects. Results: The typed SNPs were in strong linkage disequilibrium and 2 complementary haplotypes comprised 83% of those observed. Significant effects of ALDH2 haplotype were observed for breath alcohol concentration, with similar but smaller and nonsignificant effects on blood alcohol. Haplotype-related variation in responses to alcohol, and reported alcohol consumption, was small and not consistently in the direction predicted by the effects on alcohol concentrations. Conclusions: Genetic variation in ALDH2 affects alcohol metabolism in Europeans. However, the data do not support the hypothesis that this leads to effects on alcohol sensitivity, consumption, or risk of dependence. [source] Alcohol Metabolism: Role in Toxicity and CarcinogenesisALCOHOLISM, Issue 2 2003Thomas M. Badger This article contains the proceedings of a symposium at the 2002 RSA Meeting in San Francisco, organized and co-chaired by Thomas M. Badger, Paul Shih-Jiun Yin, and Helmut Seitz. The presentations were (1) First-pass metabolism of ethanol: Basic and clinical aspects, by Charles Lieber; (2) Intracellular CYP2E1 transport, oxidative stress, cytokine release, and ALD, by Magnus Ingelman-Sundberg; (3) Pulsatile ethanol metabolism in intragastric infusion models: Potential role in toxic outcomes, by Thomas M. Badger and Martin J.J. Ronis; (4) Free radicals, adducts, and autoantibodies resulting from ethanol metabolism: Role in ethanol-associated toxicity, by Emanuele Albano; and (5) Gastrointestinal metabolism of ethanol and its possible role in carcinogenesis, by Helmut Seitz. [source] Acetate inhibits NFAT activation in T cells via importin ,1 interferenceEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2007Kazuhiro Ishiguro Dr. Abstract Acetate is a principal short chain fatty acid produced by bacterial fermentation in the colon and a major end product of alcohol metabolism. In the present study, we assessed the effects of acetate on T cell activation and found that acetate inhibited NFAT activation but not NF-,B activation. Moreover, acetate impaired the nuclear translocation of NFAT but not that of NF-,B. Unlike cyclosporin A (CsA), acetate did not affect the dephosphorylation of NFAT and calcineurin activity. Acetate impaired the binding of NFAT to importin ,1, which is involved in NFAT nuclear translocation. NFAT is a critical transcription factor in cytokine and early response gene expression in activated T cells. Agents targeting NFAT such as CsA are used to suppress harmful immune responses in inflammatory diseases. Therefore, we also evaluated the efficacy of acetate in murine models of inflammatory diseases, and found that acetate administration (as well as administration of dexamethasone) attenuated trinitrobenzenesulfonic acid-induced colitis and dinitrofluorobenzene-induced dermatitis. These findings indicate for the first time that acetate inhibits NFAT activation by interfering with the interaction between NFAT and importin ,1 in T cells and that acetate can potentially act as an anti-inflammatory agent. [source] Genetic polymorphisms in alcohol metabolism, alcohol intake and the risk of stomach cancer in Warsaw, PolandINTERNATIONAL JOURNAL OF CANCER, Issue 9 2007Fang Fang Zhang Abstract Genetic variations increasing blood levels of acetaldehyde, the first metabolite of alcohol, refrain their carriers from drinking alcohol but may also put them at increased risk of cancer because of the mutagenic and carcinogenic effect of acetaldehyde. In a population-based study of 305 cases and 428 controls in Warsaw, Poland, we evaluated the effect of polymorphisms in alcohol metabolizing genes, including ADH1B (Ex9+5C>T, Ex3+23A>G, Ex3+58A>T and Ex9+77A>G), ADH1C (Ex8-56A>G and Ex6-14G>A) and ALDH2 (Ex1+82A>G), on levels of alcohol drinking and susceptibility of stomach cancer. We found that among control subjects frequency of alcohol drinking varied by alcohol metabolizing genotype. In particular, the weekly consumption of individuals carrying the AA, GA and GG genotypes of ALDH2 Ex1+82A >G polymorphism were 3.75, 2.26 and 1.53 drinks, respectively (p= 0.04). However, none of the assessed polymorphisms in these 3 genes had a measurable effect on stomach cancer risk. When stratified by ALDH2 Ex1+82A>G polymorphism, alcohol-related increases in stomach cancer risk were restricted to individuals with the AG/GG genotypes, with a more than 2-fold risk among daily drinkers (OR = 2.63, 95% CI = 1.00,6.88) and 3-fold risk (OR = 3.66, 95% CI = 1.19,11.24) among those with 40 or more drink-years. In summary, our results suggested that the ALDH2 Ex1+82 G allele may be functionally deficient in eliminating acetaldehyde and discourage alcohol drinking. Furthermore, heavy drinkers of alcohol who were genetically prone to accumulate acetaldehyde may face an increased risk of stomach cancer. © 2007 Wiley-Liss, Inc. [source] Polymorphisms of Alcohol Dehydrogenase-1B and Aldehyde Dehydrogenase-2 and the Blood and Salivary Ethanol and Acetaldehyde Concentrations of Japanese Alcoholic MenALCOHOLISM, Issue 7 2010Akira Yokoyama Background:, The effects of genetic polymorphism of aldehyde dehydrogenase-2 (ALDH2) on alcohol metabolism are striking in nonalcoholics, and the effects of genetic polymorphism of alcohol dehydrogenase-1B (ADH1B) are modest at most, whereas genetic polymorphisms of both strongly affect the susceptibility to alcoholism and upper aerodigestive tract (UADT) cancer of drinkers. Methods:, We evaluated associations between ADH1B/ADH1C/ALDH2 genotypes and the blood and salivary ethanol and acetaldehyde levels of 168 Japanese alcoholic men who came to our hospital for the first time in the morning and had been drinking until the day before. Results:, The ethanol levels in their blood and saliva were similar, but the acetaldehyde levels in their saliva were much higher than in their blood, probably because of acetaldehyde production by oral bacteria. Blood and salivary ethanol and acetaldehyde levels were both significantly higher in the subjects with the less active ADH1B*1/*1 genotype than in the ADH1B*2 carriers, but none of the levels differed according to ALDH2 genotype. Significant linkage disequilibrium was detected between the ADH1B and ADH1C genotypes, but ADH1C genotype did not affect the blood or salivary ethanol or acetaldehyde levels. High blood acetaldehyde levels were found even in the active ALDH2*1/*1 alcoholics, which were comparable with the levels of the inactive heterozygous ALDH2*1/*2 alcoholics with less active ADH1B*1/*1. The slope of the increase in blood acetaldehyde level as the blood ethanol level increased was significantly steeper in alcoholics with inactive heterozygous ALDH2*1/*2 plus ADH1B*2 allele than with any other genotype combinations, but the slopes of the increase in salivary acetaldehyde level as the salivary ethanol level increased did not differ between the groups of subjects with any combinations of ALDH2 and ADH1B genotypes. Conclusions:, The ADH1B/ALDH2 genotype affected the blood and salivary ethanol and acetaldehyde levels of nonabstinent alcoholics in a different manner from nonalcoholics, and clear effects of ADH1B genotype and less clear effects of ALDH2 were observed in the alcoholics. Alterations in alcohol metabolism as a result of alcoholism may modify the gene effects, and these findings provide some clues in regard to associations between the genotypes and the risks of alcoholism and UADT cancer. [source] Influence of Dissolved Oxygen Concentration on the Pharmacokinetics of Alcohol in HumansALCOHOLISM, Issue 5 2010In-hwan Baek Background:, Ethanol oxidation by the microsomal ethanol oxidizing system requires oxygen for alcohol metabolism, and a higher oxygen uptake increases the rate of ethanol oxidation. We investigated the effect of dissolved oxygen on the pharmacokinetics of alcohol in healthy humans (n = 49). The concentrations of dissolved oxygen were 8, 20, and 25 ppm in alcoholic drinks of 240 and 360 ml (19.5% v/v). Methods:, Blood alcohol concentrations (BACs) were determined by converting breath alcohol concentrations. Breath samples were collected every 30 min when the BAC was higher than 0.015%, 20 min at BAC ,0.015%, 10 min at BAC ,0.010%, and 5 min at BAC ,0.006%. Results:, The high dissolved oxygen groups (20, 25 ppm) descended to 0.000% and 0.050% BAC faster than the normal dissolved oxygen groups (8 ppm; p < 0.05). In analyzing pharmacokinetic parameters, AUCinf and Kel of the high oxygen groups were lower than in the normal oxygen group, while Cmax and Tmax were not significantly affected. In a Monte Carlo simulation, the lognormal distribution of mean values of AUCinf and t1/2 was expected to be reduced in the high oxygen group compared to the normal oxygen group. Conclusions:, In conclusion, elevated dissolved oxygen concentrations in alcoholic drinks accelerate the metabolism and elimination of alcohol. Thus, enhanced dissolved oxygen concentrations in alcohol may have a role to play in reducing alcohol-related side effects and accidents. [source] SIAM-Like Phenomenon Caused by Low Doses of AlcoholALCOHOLISM, Issue 2010Akiko Shimamoto Background:, Swift increase in alcohol metabolism (SIAM) is usually evoked by a large dose of ethanol, which is often demonstrated by an abrupt increase in oxygen uptake. SIAM was induced by low doses of ethanol and evaluated by pharmacokinetic analyses of ethanol and its metabolites. Methods:, Rabbits were initially administered 1.0 g/kg of ethanol solution and the same dose was given to the bolus group 6 hours after the first injection. The infusion group was administered 0.25 g/kg/h of ethanol 2 hours after the first injection. Blood concentrations of ethanol, acetaldehyde, and acetate were then determined and comparisons were made using pharmacokinetic parameters. Results:, A significantly higher ethanol elimination rate was observed after re-administration of ethanol to the bolus group. Other pharmacokinetic parameters were unaffected. The concentration at steady state (Css) for the infusion group was stable. A significantly higher level of mean residence time (MRT) in blood acetaldehyde was observed for the bolus group, whereas no MRT changes were observed for the infusion group. A significantly higher level of blood acetate Css was observed after re-administration of ethanol to the bolus group, following the changes in area under concentration and MRT. No Css changes were observed for the infusion group. The Css of acetate at stage 2 was significantly higher for the bolus group, compared to the infusion group. Conclusion:, Low doses of ethanol enhanced alcohol metabolism in rabbits, according to a pharmacokinetic analysis of circulating ethanol concentrations. Simultaneous analyses of its metabolites followed the kinetic of ethanol. [source] Alcohol, Cocaine, and Brain Stimulation-Reward in C57Bl6/J and DBA2/J MiceALCOHOLISM, Issue 1 2010Eric W. Fish Background:, Pleasure and reward are critical features of alcohol drinking that are difficult to measure in animal studies. Intracranial self-stimulation (ICSS) is a behavioral method for studying the effects of drugs directly on the neural circuitry that underlies brain reward. These experiments had 2 objectives: first, to establish the effects of alcohol on ICSS responding in the C57Bl6/J (C57) and DBA2/J (DBA) mouse strains; and second, to compare these effects to those of the psychostimulant cocaine. Methods:, Male C57 and DBA mice were implanted with unipolar stimulating electrodes in the lateral hypothalamus and conditioned to spin a wheel for reinforcement by the delivery of rewarding electrical stimulation (i.e., brain stimulation-reward or BSR). Using the curve-shift method, the BSR threshold (,0) was determined immediately before and after oral gavage with alcohol (0.3, 0.6, 1.0, 1.7 g/kg) or water. Blood alcohol concentration (BAC) was measured to determine the influence of alcohol metabolism on BSR threshold. Separately, mice were administered cocaine (1.0, 3.0, 10.0, 30.0 mg/kg) or saline intraperitoneally. Results:, In C57 mice, the 0.6 g/kg dose of alcohol lowered BSR thresholds by about 20%, during the rising (up to 40 mg/dl), but not falling, phase of BAC. When given to the DBA mice, alcohol lowered BSR thresholds over the entire dose range; the largest reduction was by about 50%. Cocaine lowered BSR thresholds in both strains. However, cocaine was more potent in DBA mice than in C57 mice as revealed by a leftward shift in the cocaine dose,response curve. For both alcohol and cocaine, effects on BSR threshold were dissociable from effects on operant response rates. Conclusions:, In C57 and DBA mice, reductions in BSR threshold reflect the ability of alcohol to potentiate the neural mechanisms of brain reward. The DBA mice are more sensitive to the reward-potentiating effects of both alcohol and cocaine, suggesting that there are mouse strain differences in the neural mechanisms of brain reward that can be measured with the ICSS technique. [source] Polymorphisms of Alcohol Metabolizing Enzymes in Indigenous Mexican Population: Unusual High Frequency of CYP2E1*c2 AlleleALCOHOLISM, Issue 1 2010Elizabeth Gordillo-Bastidas Background:, Alcohol abuse represents the major identified etiological factor of cirrhosis in México. ADH1B, ALDH2, and CYP2E1 have been considered candidate genes in alcohol-related diseases. Controversial results probably due to ethnic differences, among other factors, have been reported. Mexican Mestizos (MES) derive from the combination of indigenous, Spaniard, and African genes. Huichols (HUI) constitute an indigenous group from western Mexico with no racial admixture. We determined ADH1B*2, ALDH2*2, and CYP2E1*c2 allele frequencies in healthy HUI and MES from western Mexico. Lipid and hepatic profile were also carried out. Methods:, One hundred and one HUI and 331 MES subjects were studied. Genotype and allele frequency were assessed through polymerase chain reaction,restriction fragment length polymorphism after DNA isolation from peripheral leukocytes. Commercial kits for lipid and hepatic determinations were used. Results:, Polymorphic allele distribution in HUI was: 0%ADH1B*2, 0.5%ALDH2*2, 51.5%CYP2E1*c2; in MES: 3.4%ADH1B*2, 0%ALDH2*2, 16.1%CYP2E1*c2. Frequency of ADH1B*2 was statistically (p < 0.001) lower in HUI than MES. CYP2E1*c2 polymorphic allele was significantly higher (p < 0.0001) in HUI than MES. Hepatic profile was normal in both groups. HUI showed a better lipid profile than MES independently of genotype. Conclusions:, Huichols exhibited the highest CYP2E1*c2 allele frequency of the world documented up to this date; meanwhile, ADH1B*2 and ALDH2*2 were practically absent. This feature could be useful in the understanding of Mexican population gene composition, alcohol metabolism, and alcoholic liver disease development. However, further association studies are necessary. The heterogeneity of Mexican population was evidenced by the significantly different distribution of CYP2E1*c2 allele observed among different regions of the country. Lipid and hepatic values were not associated to genotype. This report constitutes the first study dealing with gene polymorphisms of alcohol metabolizing enzymes conducted in HUI. [source] Associations and Interactions Between SNPs in the Alcohol Metabolizing Genes and Alcoholism Phenotypes in European AmericansALCOHOLISM, Issue 5 2009Richard Sherva Background:, Alcohol dependence is a major cause of morbidity and mortality worldwide and has a strong familial component. Several linkage and association studies have identified chromosomal regions and/or genes that affect alcohol consumption, notably in genes involved in the 2-stage pathway of alcohol metabolism. Methods:, Here, we use multiple regression models to test for associations and interactions between 2 alcohol-related phenotypes and SNPs in 17 genes involved in alcohol metabolism in a sample of 1,588 European American subjects. Results:, The strongest evidence for association after correcting for multiple testing was between rs1229984, a nonsynonymous coding SNP in ADH1B, and DSM-IV symptom count (p = 0.0003). This SNP was also associated with maximum number of drinks in 24 hours (p = 0.0004). Each minor allele at this SNP predicts 45% fewer DSM-IV symptoms and 18% fewer max drinks. Another SNP in a splice site in ALDH1A1 (rs8187974) showed evidence for association with both phenotypes as well (p = 0.02 and 0.004, respectively), but neither association was significant after accounting for multiple testing. Minor alleles at this SNP predict greater alcohol consumption. In addition, pairwise interactions were observed between SNPs in several genes (p = 0.00002). Conclusions:, We replicated the large effect of rs1229984 on alcohol behavior, and although not common (MAF = 4%), this polymorphism may be highly relevant from a public health perspective in European Americans. Another SNP, rs8187974, may also affect alcohol behavior but requires replication. Also, interactions between polymorphisms in genes involved in alcohol metabolism are likely determinants of the parameters that ultimately affect alcohol consumption. [source] Nicotine Decreases Blood Alcohol Concentrations in Adult Rats: A Phenomenon Potentially Related to Gastric FunctionALCOHOLISM, Issue 8 2006Scott E. Parnell Background: In spite of the fact that drinking and smoking often occur together, little is known about the pharmacokinetic interaction between alcohol and nicotine. Previous research in neonatal rats demonstrated that nicotine reduces blood alcohol concentrations (BACs) if alcohol and nicotine are administered simultaneously. However, it is unclear whether such a phenomenon can be observed in adult subjects, given the fact that there is an ontogenetic difference in alcohol metabolism. Methods: A range of nicotine doses (0, 0.25, 0.5, 1, 2, 4, and 6 mg/kg) were administered individually with an alcohol dose (4 g/kg) via intragastric (IG) intubation to adult female rats, and the resultant BACs were measured at various time points following drug administration. Furthermore, the hypothesis that nicotine's role in reducing BACs is mediated through factors related to gastric function was examined by comparing the resultant BACs after an IG intubation or intraperitoneal (IP) injection of alcohol. Results: The results from this study showed significant nicotine dose,related decreases in BACs with 0.5, 1, 2, 4, and 6 mg/kg doses of nicotine at the various time points assessed. This effect, however, occurred only when alcohol was administered via IG intubation, but not after an IP injection of alcohol. Conclusions: These results suggest that the nicotine-induced decrease in BAC may be related to gastric function. One possible explanation was related to nicotine's action in delaying gastric emptying. The longer the alcohol was retained in the stomach, the more likely that the alcohol would be metabolized by gastric alcohol dehydrogenase before its absorption into the bloodstream by the small intestine (the major site of alcohol absorption). [source] Effects of Variation at the ALDH2 Locus on Alcohol Metabolism, Sensitivity, Consumption, and Dependence in EuropeansALCOHOLISM, Issue 7 2006Peter A. Dickson Background: The low-activity variant of the aldehyde dehydrogenase 2 (ALDH2) gene found in East Asian populations leads to the alcohol flush reaction and reduces alcohol consumption and risk of alcohol dependence (AD). We have tested whether other polymorphisms in the ALDH2 gene have similar effects in people of European ancestry. Methods: Serial measurements of blood and breath alcohol, subjective intoxication, body sway, skin temperature, blood pressure, and pulse were obtained in 412 twins who took part in an alcohol challenge study. Participants provided data on alcohol reactions, alcohol consumption, and symptoms related to AD at the time of the study and subsequently. Haplotypes based on 5 single-nucleotide polymorphisms (SNPs) were used in tests of the effects of variation in the ALDH2 gene on alcohol metabolism and alcohol's effects. Results: The typed SNPs were in strong linkage disequilibrium and 2 complementary haplotypes comprised 83% of those observed. Significant effects of ALDH2 haplotype were observed for breath alcohol concentration, with similar but smaller and nonsignificant effects on blood alcohol. Haplotype-related variation in responses to alcohol, and reported alcohol consumption, was small and not consistently in the direction predicted by the effects on alcohol concentrations. Conclusions: Genetic variation in ALDH2 affects alcohol metabolism in Europeans. However, the data do not support the hypothesis that this leads to effects on alcohol sensitivity, consumption, or risk of dependence. [source] Simulated driving performance following prolonged wakefulness and alcohol consumption: separate and combined contributions to impairmentJOURNAL OF SLEEP RESEARCH, Issue 3 2000Arnedt The separate and combined effects of prolonged wakefulness and alcohol were compared on measures of subjective sleepiness, simulated driving performance and drivers' ability to judge impairment. Twenty-two males aged between 19 and 35 years were tested on four occasions. Subjects drove for 30 min on a simulated driving task under conditions determined by the factorial combination of 16 and 20 h of wakefulness and blood alcohol concentrations of 0.00 and 0.08%. The simulated driving session took place 30 min postingestion; subjects in the two alcohol conditions participated in a second 30-min driving session 90-min postingestion. Subjects made simultaneous ratings of their impairment while driving and retrospective ratings at the end of each test session. Subjective sleepiness measures were completed before and after each driving session. The combination of 20 h of prolonged wakefulness and alcohol produced significantly lower ratings of subjective sleepiness and driving performance that was worse, but not significantly so, than would be expected from the additive effects of each condition alone. Driving performance was always worse in the second driving session, during the elimination phase of alcohol metabolism, despite blood alcohol concentrations being lower than during the first driving session. There was a modest association between perceived and actual impairments in driving performance following prolonged wakefulness and alcohol. The findings suggest that the combination of prolonged wakefulness and alcohol consumption produced greater decrements in simulated driving performance than each condition alone and that drivers have only a modest ability to appreciate the magnitude of their impairment. [source] Inhibition of Alcohol-Associated Colonic Hyperregeneration by ,-Tocopherol in the RatALCOHOLISM, Issue 1 2003P. Vincon Background: Chronic alcohol consumption results in colorectal mucosal hyperregeneration, a condition associated with an increased risk for colorectal cancer. Possible mechanisms may involve the effects of acetaldehyde and/or free radicals generated during alcohol metabolism. Vitamin E is part of the antioxidative defense system, and its concentration is decreased or its metabolic utilization increased in various tissues after chronic alcohol consumption. We wondered whether ,-tocopherol supplementation may prevent ethanol-induced colorectal cell cycle behavior and whether these changes were related to alterations in protein synthesis. Methods: Five groups of male Wistar rats, each consisting of 14 animals, received liquid diets as follows: group 1, alcohol; group 2, alcohol +,-tocopherol; group 3, control (i.e., isocaloric glucose); group 4; control (i.e., isocaloric glucose) +,-tocopherol. Group 5 was fed a solid chow diet ad libitum. After 4 weeks of feeding, immunohistology was performed with anti-proliferating cell nuclear antigen (PCNA) or anti-BCL2 antibodies. Fractional (ks) and absolute (Vs) rates of protein synthesis and rates of protein synthesis relative to RNA (kRNA) and DNA (kDNA) were measured with a flooding dose of L-[4- 3H] phenylalanine with complementary analysis of protein and nucleic acid composition. Results: The PCNA index was increased significantly in the colon after ethanol administration compared with controls (ethanol, 10.3 ± 2.3 vs. control, 6.51 ± 1.6% PCNA positive cells, p < 0.05), although neither the protein, RNA, and DNA concentrations nor ks, kRNA, kDNA, and Vs were affected. This increase in PCNA index was significantly diminished by coadministration of ,-tocopherol (ethanol +, - tocopherol, 7.86 ± 1.71% PCNA positive cells, p < 0.05) without significant alterations in protein synthetic parameters. A similar result was obtained for the PCNA index in the rectal mucosa (ethanol, 14.6 ± 4.4 vs. control, 12.1 ± 4.2% PCNA positive cell), although this did not reach statistical significance. Neither ethanol nor , - tocopherol feeding had any significant effect on BCL-2 expression in the colorectal mucosa. As with the colon, protein synthetic parameters in the mucosa were not affected by alcohol feeding at 4 weeks. These effects on colonic cell turnover without corresponding changes in protein synthesis thus represent a specific localized phenomenon rather than a general increase in anabolic processes in the tissue and reaffirm the hyperregenerative properties of chronic alcohol consumption. Conclusions: Alcohol-associated hyperproliferation could be prevented, at least in part, by supplementation with ,-tocopherol. This may support the hypothesis that free radicals are involved in the pathogenesis of alcohol-associated colorectal hyperproliferation. [source] Disruption of Maternal Behavior by Alcohol Intoxication in the Lactating Rat: A Behavioral and Metabolic AnalysisALCOHOLISM, Issue 8 2002Marta Yanina Pepino Background Preweanling rats exhibit clear behavioral signs of distress after interacting with an alcohol-intoxicated dam. Interestingly, behavioral reactivity of infants to the experience of alcohol in the nursing context decreases as a function of repeated alcohol administrations to the mother. In this study, maternal activities were examined when dams were exposed to repeated administrations of a subnarcoleptic alcohol dose. Maternal changes in alcohol metabolism were also analyzed as a function of repeated exposures to the drug. Methods During postpartum days 3, 5, 7, 9, 11, and 13, nursing dams received an intragastric administration of either 2.5 g/kg of alcohol or water. Maternal behaviors were evaluated (experiment 1). Blood alcohol levels (BALs) of the dams were determined on postpartum day 16 after all mothers received either an intragastric (experiment 2) or an intraperitoneal (experiment 3) dose of alcohol. The doses used (2.5 g/kg intragastrically and 1.5 g/kg intraperitoneally) were chosen because they promote similar peak BALs in dams naive to alcohol. Results Maternal behaviors were strongly affected by the state of intoxication. Nevertheless, these disruptions clearly subsided with progression of alcohol-related experiences (experiment 1). Chromatographic analysis of alcohol metabolism indicated the development of tolerance in dams that had prior experience with alcohol (experiment 2). Changes in BALs as a function of prior experience with alcohol seemed related to first-pass alcohol metabolism rather than hepatic oxidative processes of the drug (experiments 2 and 3). Conclusions When the dam first experiences a moderate state of alcohol intoxication, maternal behaviors are uniformly disrupted. Subsequent exposures to alcohol lead to maternal metabolic tolerance. In conjunction with previous studies, these data indicate that infantile reactivity to alcohol is dependent on how the members of the dam/pup dyad express or perceive ethanol's postabsorptive effects. [source] Testing Genetic Susceptibility Loci for Alcoholic Heart Muscle DiseaseALCOHOLISM, Issue 10 2001Olli A. Kajander Background: Although many heavy alcohol users have subclinical alcoholic heart muscle disease, only a very few develop severe dilated cardiomyopathy. Therefore, and because cardiac abnormalities correlate only weakly with the duration or quantity of drinking, individual susceptibility differences may exist. In this work we examined whether common gene variants previously associated with cardiac hypertrophy or altered alcohol metabolism could modify the effects of alcohol on the heart. Methods: We studied 700 middle-aged male victims of sudden death who underwent a medicolegal autopsy. In addition to routine postmortem examination, the weights and the cavity and wall dimensions of the left and right ventricle were measured. Coronary artery stenoses were determined from a silicone rubber cast of the arteries. Alcohol consumption and cardiovascular risk factors were assessed by a structured interview of the spouse. The following gene polymorphisms were determined by using polymerase chain reaction restriction fragment length polymorphism and solid-phase minisequencing techniques: angiotensin converting enzyme I/D, angiotensin II type 1 receptor 1166A/C, aldosterone synthase ,344C/T, alcohol dehydrogenases 2 and 3, acetaldehyde dehydrogenase 2, and cytochrome P-450 2E1 Dra I, Pst I, Rsa I, and Msp I. Results: The most consistent effects of alcohol (p < 0.05) were a higher total heart weight and a larger right ventricle size with increasing daily drinking. However, these and other effects of alcohol were statistically fully independent of the studied genotypes. Conclusions: The gene polymorphisms selected for and analyzed in our study are unlikely to modify the effects of alcohol on the heart. Other unknown factors determine the individual susceptibility to alcoholic heart muscle disease. [source] Genetic Determinants of Alcohol Addiction and Metabolism: A Survey in ItalyALCOHOLISM, Issue 2 2001Roberta Pastorelli Background: Although multiple genes are involved in alcoholism and can contribute differently to the risk of dependence and liver damage, no studies have investigated susceptibility to addiction in combination with susceptibility to liver damage due to differences in ethanol metabolism. Methods: We evaluated the role of three polymorphic genes related to alcohol metabolism (CYP2E1) and, possibly, dependence (DRD2 and SLC6A4 promoter) in a series of 60 alcoholics admitted to a specialized referral center in Florence, Italy. Eighteen had a diagnosis of liver cirrhosis. A control series of 64 blood donors were identified at the same hospital. Genotyping was done by polymerase chain reaction-restriction fragment length polymorphism methods. Results: No difference was found in the frequency of the CYP2E 1 Rsa I c2 allele (2.5% among alcoholics and 4.7% among controls) and the Dra I C allele (6.7% and 10.1%). Similarly, no difference was found in the frequency of the DRD2 A1 allele (15.8% and 13.3%) and the B1 allele (10.8% and 8.6%). The proportion of controls with a combined B1 genotype (B1/B1 or B1/B2) was significantly associated with smoking (p= 0.03). The distribution of the S and L allele of the SLC6A4 gene was similar in the two groups, with 15% and 14%, respectively, homozygous S/S carriers. A significant association, however, emerged in the group of alcoholics, with a five times higher risk for S/S carriers of developing cirrhosis (p < 0.05). This association with liver persisted even after exclusion of the subgrouped of 10 hepatitis C virus positive alcoholics. Conclusions: Overall, our results provided no evidence of an increased susceptibility to develop alcoholism that was associated with the three genotypes investigated, either alone or in combination. An increased risk of developing liver cirrhosis for S/S homozygous carriers among alcohol-dependent patients was observed for the first time. [source] Mothers' maximum drinks ever consumed in 24 hours predicts mental health problems in adolescent offspringTHE JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY AND ALLIED DISCIPLINES, Issue 9 2010Stephen M. Malone Background:, The maximum number of alcoholic drinks consumed in a single 24-hr period is an alcoholism-related phenotype with both face and empirical validity. It has been associated with severity of withdrawal symptoms and sensitivity to alcohol, genes implicated in alcohol metabolism, and amplitude of a measure of brain activity associated with externalizing disorders in general. In a previous study we found that the maximum number of drinks fathers had ever consumed in 24 hrs was associated with externalizing behaviors and disorders in preadolescent and adolescent children. The purpose of the present study was to determine whether maternal maximum consumption has similar correlates. Method:, We examined associations between maternal maximum consumption and alcohol dependence, respectively, and disruptive disorders and substance-related problems in two large independent population-based cohorts of 17-year-old adolescents. Results:, Maximum consumption was associated with conduct disorder, disruptive disorders in general, early substance use and misuse, and substance disorders in adolescent children regardless of sex. Associations were consistent across cohorts, providing internal replication. They also paralleled our previous findings regarding paternal status. They could not be explained by maternal alcohol dependence, effects of drinking during pregnancy, or paternal maximum consumption. They were not simple artifacts of the fact that maximum consumption is a continuous measure while alcohol dependence is dichotomous. Conclusions:, Despite deriving from a single question about lifetime behavior, parental maximum consumption appears to reflect vulnerability for mental health problems, especially substance-related ones, more directly than a diagnosis of alcohol dependence. [source] Male gametophyte development in bread wheat (Triticum aestivum L.): molecular, cellular, and biochemical analyses of a sporophytic contribution to pollen wall ontogenyTHE PLANT JOURNAL, Issue 6 2002Aiming Wang Summary Bread wheat (hexaploid AABBDD genome; 16 billion basepairs) is a genetically complex, self-pollinating plant with bisexual flowers that produce short-lived pollen. Very little is known about the molecular biology of its gametophyte development despite a longstanding interest in hybrid seeds. We present here a comprehensive characterization of three apparently homeologous genes (TAA1a, TAA1b and TAA1c) and demonstrate their anther-specific biochemical function. These eight-exon genes, found at only one copy per haploid complement in this large genome, express specifically within the sporophytic tapetum cells. The presence of TAA1 mRNA and protein was evident only at specific stages of pollen development as the microspore wall thickened during the progression of free microspores into vacuolated-microspores. This temporal regulation matched the assembly of wall-impregnated sporopollenin, a phenylpropanoid-lipid polymer containing very long chain fatty alcohols (VLCFAlc), described in the literature. Our results establish that sporophytic genes contribute to the production of fatty alcohols: Transgenic expression of TAA1 afforded production of long/VLCFAlc in tobacco seeds (18 : 1; 20 : 1; 22 : 1; 24 : 0; 26 : 0) and in Escherichia coli (14 : 0; 16 : 0; 18 : 1), suggesting biochemical versatility of TAA1 with respect to cellular milieu and substrate spectrum. Pollen walls additionally contain fatty alcohols in the form of wax esters and other lipids, and some of these lipids are known to play a role in the highly specific sexual interactions at the pollen,pistil interface. This study provides a handle to study these and to manipulate pollen traits, and, furthermore, to understand the molecular biology of fatty alcohol metabolism in general. [source] Refined Geographic Distribution of the Oriental ALDH2*504Lys (nee 487Lys) VariantANNALS OF HUMAN GENETICS, Issue 3 2009Hui Li Summary Mitochondrial aldehyde dehydrogenase (ALDH2) is one of the most important enzymes in human alcohol metabolism. The oriental ALDH2*504Lys variant functions as a dominant negative, greatly reducing activity in heterozygotes and abolishing activity in homozygotes. This allele is associated with serious disorders such as alcohol liver disease, late onset Alzheimer disease, colorectal cancer, and esophageal cancer, and is best known for protection against alcoholism. Many hundreds of papers in various languages have been published on this variant, providing allele frequency data for many different populations. To develop a highly refined global geographic distribution of ALDH2*504Lys, we have collected new data on 4,091 individuals from 86 population samples and assembled published data on a total of 80,691 individuals from 366 population samples. The allele is essentially absent in all parts of the world except East Asia. The ALDH2*504Lys allele has its highest frequency in Southeast China, and occurs in most areas of China, Japan, Korea, Mongolia, and Indochina with frequencies gradually declining radially from Southeast China. As the indigenous populations in South China have much lower frequencies than the southern Han migrants from Central China, we conclude that ALDH2*504Lys was carried by Han Chinese as they spread throughout East Asia. Esophageal cancer, with its highest incidence in East Asia, may be associated with ALDH2*504Lys because of a toxic effect of increased acetaldehyde in the tissue where ingested ethanol has its highest concentration. While the distributions of esophageal cancer and ALDH2*504Lys do not precisely correlate, that does not disprove the hypothesis. In general the study of fine scale geographic distributions of ALDH2*504Lys and diseases may help in understanding the multiple relationships among genes, diseases, environments, and cultures. [source] |