Home About us Contact | |||
Alcohol Dehydrogenase (alcohol + dehydrogenase)
Kinds of Alcohol Dehydrogenase Terms modified by Alcohol Dehydrogenase Selected AbstractsTowards a Large-Scale Asymmetric Reduction Process with Isolated Enzymes: Expression of an (S)-Alcohol Dehydrogenase in E.,coli and Studies on the Synthetic Potential of this BiocatalystADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 3 2003Werner Hummel No abstract is available for this article. [source] Pyrene Excimer Fluorescence of Yeast Alcohol Dehydrogenase: A Sensitive Probe to Investigate Ligand Binding and Unfolding Pathway of the EnzymePHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2006Manas Kumar Santra ABSTRACT The cysteine residues of yeast alcohol dehydrogenase (YADH) were covalently modified by N-(1-pyrenyl) maleimide (PM). A maximum of 3.4 cysteines per YADH monomer could be modified by PM. The secondary structure of PM-YADH was found to be similar to that of the native YADH using far-UV circular dichroism. The covalent modification of YADH by PM inhibited the enzymatic activity indicating that the active site of the enzyme was altered. PM-YADH displayed maximum excimer fluorescence at an incorporation ratio of 2.6 mol of PM per monomeric subunit of YADH. Nucleotide adenine dinucleotide (NAD) divalent zinc and ethanol reduced the excimer fluorescence of PM-YADH indicating that these agents induce conformational changes in the enzyme. Guani-dinium hydrochloride (GdnHCl)-induced unfolding of YADH was analyzed using tryptophan fluorescence, pyrene excimer fluorescence and enzymatic activity. The unfolding of YADH was found to occur in a stepwise manner. The loss of enzymatic activity preceded the global unfolding of the protein. Further, changes in tryptophan fluorescence with increasing GdnHCl suggested that YADH was completely unfolded by 2.5 M GdnHCl. Interestingly, residual structures of YADH were detected even in the presence of 5 M GdnHCl using the excimer fluorescence of PM-YADH. [source] A Single Point Mutation Reverses the Enantiopreference of Thermoanaerobacter ethanolicus Secondary Alcohol DehydrogenaseCHEMCATCHEM, Issue 1 2009The asymmetric reduction of benzylic and heteroaryl ketones to the corresponding (R)-alcohols using I86A Thermoanaerobacter ethanolicus alcohol dehydrogenase (I86A TeSADH) is described. This single amino acid mutation not only makes the active site of I86A TeSADH able to accommodate more sterically demanding substituents than those accommodated by wild-type TeSADH, but it also reverses the substrate stereospecificity of TeSADH. [source] Effect of Ionic Liquids on Catalytic Characteristics of Horse Liver Alcohol DehydrogenaseCHINESE JOURNAL OF CHEMISTRY, Issue 11 2006Xian-Ai Shi Abstract The catalytic characteristics of horse liver alcohol dehydrogenase (HLADH) in the systems involving ionic liquids (ILs) (BMIm·Cl, BMIm·Br, BMIm·PF6, BMIm·BF4 BMIm·OTf and EMIm·Cl) were examined. HLADH displayed higher oxidation activity towards ethanol in the systems containing BMIm·Cl, BMIm·Br, EMIm·Cl or BMIm·PF6 with proper content than that in the IL-free buffer. An excessive amount of these ILs in the reaction systems resulted in an obvious decline in enzymatic activity. BMIm·BF4 and BMIm·OTf of any content investigated could considerably inhibit the enzyme. The anions of ILs showed significant effect on the activity, kinetic parameters and activation energy of HLADH-mediated ethanol oxidation. Additionally, BMIm·Cl, BMIm·Br, EMIm·Cl and BMIm·PF6 boosted markedly the thermostability of HLADH, while the enzyme was less thermostable in BMIm·BF4 or BMIm·OTf-containing systems. The associated conformational changes in HLADH caused by ILs were examined by UV technique. [source] Expression Pattern, Ethanol-Metabolizing Activities, and Cellular Localization of Alcohol and Aldehyde Dehydrogenases in Human Pancreas: Implications for Pathogenesis of Alcohol-Induced Pancreatic InjuryALCOHOLISM, Issue 6 2009Chien-Ping Chiang Background:, Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are major enzymes responsible for metabolism of ethanol. Genetic polymorphisms of ADH1B, ADH1C, and ALDH2 occur among racial populations. The metabolic effect and metabolites contribute to pathogenesis of pancreatic injury. The goal of this study was to determine the functional expressions and cellular localization of ADH and ALDH families in human pancreas. Methods:, Fifty five surgical specimens of normal pancreas as well as 15 samples each for chronic pancreatitis and pancreatic cancer from archival formalin-fixed paraffin-embedded tissue specimens were investigated. Class-specific antibodies were prepared by affinity chromatographies from rabbit antisera raised against recombinant human ADH1C1, ADH4, ADH5, ADH7, ALDH1A1, ALDH2, and ALDH3A1. The isozyme expression patterns of ADH/ALDH were identified by isoelectric focusing, and the activities were assayed spectrophotometrically. The protein contents of ADH/ALDH isozymes were determined by immunoblotting, and the cellular localizations were detected by immunohistochemistry and histochemistry. Results:, At 33 mM ethanol, pH 7.5, the activities were significantly different between allelic phenotypes of ADH1B. The activity of ALDH2-inactive phenotypes was slightly lower than ALDH2-active phenotypes at 200 ,M acetaldehyde. The protein contents were in the following decreasing order: ALDH1A1, ALDH2, ADH1, and ADH5. ADH1B was detected in the acinar cells and ADH1C in the ductular, islet, and stellate cells. The expression of ADH1C appeared to be increased in the activated pancreatic stellate cells in chronic pancreatitis and pancreatic cancer. Conclusions:, Alcohol dehydrogenase and ALDH family members are differentially expressed in the various cell types of pancreas. ADH1C may play an important role in modulation of activation of pancreatic stellate cells. [source] The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive reviewFEMS YEAST RESEARCH, Issue 7 2008Olga De Smidt Abstract Alcohol dehydrogenases (ADHs) constitute a large family of enzymes responsible for the reversible oxidation of alcohols to aldehydes with the concomitant reduction of NAD+ or NADP+. These enzymes have been identified not only in yeasts, but also in several other eukaryotes and even prokaryotes. The ADHs of Saccharomyces cerevisiae have been studied intensively for over half a century. With the ever-evolving techniques available for scientific analysis and since the completion of the Yeast Genome Project, a vast amount of new information has been generated during the past 10 years. This review attempts to provide a brief summary of the wealth of knowledge gained from earlier studies as well as more recent work. Relevant aspects regarding the primary and secondary structure, kinetic characteristics, function and molecular regulation of the ADHs in S. cerevisiae are discussed in detail. A brief outlook also contemplates possible future research opportunities. [source] Stereoselective Synthesis of Three Isomers of tert -Butyl 5-Hydroxy-4-methyl-3-oxohexanoate through Alcohol Dehydrogenase-Catalyzed Dynamic Kinetic ResolutionADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1-2 2009Steffen Lüdeke Abstract Regioselective reduction of the 5-keto group of tert -butyl 4-methyl-3,5-dioxohexanoate (1) leads to a stereodiad of tert -butyl 5-hydroxy-4-methyl-3-oxohexanoate (2). Alcohol dehydrogenases from Lactobacillus brevis (LBADH), Rhodococcus sp. (RS 1-ADH) and Saccharomyces cerevisiae (YGL157w) reduce 1 under dynamic kinetic resolution conditions, thereby establishing two chiral carbons with a single reduction step. While it had been shown previously that LBADH reduction of 1 stereoselectively leads to syn -(4S,5R)- 2, alcohol dehydrogenase-mediated dynamic kinetic resolution now allows easy access to syn -(4R,5S)- 2 (RS 1-ADH; 97.6% ee, syn:anti=92:8, 66% conversion, 37% isolated yield) and anti -(4S,5S)- 2 (YGL157w; 90% ee, anti:syn=93:7, 64% conversion, 42% isolated yield), as well. Thus three out of four possible stereoisomers were formed selectively upon reduction of 1. [source] Expression, purification and crystallization of a thermostable short-chain alcohol dehydrogenase from the archaeon Thermococcus sibiricusACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 6 2010A. V. Lyashenko Alcohol dehydrogenases belong to the oxidoreductase family and play an important role in a broad range of physiological processes. They catalyze the cofactor-dependent reversible oxidation of alcohols to the corresponding aldehydes or ketones. The NADP-dependent short-chain alcohol dehydrogenase TsAdh319 from the thermophilic archaeon Thermococcus sibiricus was overexpressed, purified and crystallized. Crystals were obtained using the hanging-drop vapour-diffusion method using 25%(w/v) polyethylene glycol 3350 pH 7.5 as precipitant. The crystals diffracted to 1.68,Ĺ resolution and belonged to space group I222, with unit-cell parameters a = 55.63, b = 83.25, c = 120.75,Ĺ. [source] Effect of Enzyme and Cofactor Immobilization on the Response of Ethanol Oxidation in Zirconium Phosphate Modified BiosensorsELECTROANALYSIS, Issue 10 2010Mitk'El Abstract Two different self-contained ethanol amperometric biosensors incorporating layered [Ru(phend)2bpy]2+ -intercalated zirconium phosphate (ZrP) as the mediator as well as yeast -alcohol dehydrogenase (y- ADH) and its cofactor nicotinamide adenine dinucleotide (NAD+) were constructed to improve upon a design previously reported where only this mediator was immobilized in the surface of a modified electrode. In the first biosensor, a [Ru(phend)2bpy]2+ -intercalated ZrP modified carbon paste electrode (CPE) was improved by immobilizing in its surface both y- ADH and NAD+ using quaternized Nafion membrane. In the second biosensor, a glassy carbon electrode was modified with [Ru(phend)2bpy]2+ -intercalated ZrP, y- ADH, and NAD+ using Nafion as the holding matrix. Calibration plots for ethanol sensing were constructed in the presence and absence of ZrP. In the absence of ZrP in the surface of the modified glassy carbon electrode, leaching of ADH was observed as detected by UV-vis spectrophotometry. Ethanol sensing was also tested in the presence and absence of ascorbate to measure the selectivity of the sensor for ethanol. These two ethanol biosensors were compared to a previously reported one where the y -ADH and the NAD+ were in solution, not immobilized. [source] Evaluating Enzyme Cascades for Methanol/Air Biofuel Cells Based on NAD+ -Dependent EnzymesELECTROANALYSIS, Issue 7-8 2010Abstract Previous work by the group has entailed encapsulating enzymes in polymeric micelles at bioelectrode surfaces by utilizing hydrophobically modified Nafion membranes, which are modified in order to eliminate the harsh acidity of Nafion while tailoring the size of the polymer micelles to optimize for the encapsulation of an individual enzyme. This polymer encapsulation has been shown to provide high catalytic activity and enzyme stability. In this study, we employed this encapsulation technique in developing a methanol/air biofuel cell through the combined immobilization of NAD+ -dependent alcohol dehydrogenase (ADH), aldehyde dehydrogenase (AldDH) and formate dehydrogenase (FDH) within a tetrabutylammonium bromide (TBAB) modified Nafion to oxidize methanol to carbon dioxide with poly(methylene green) acting as the NADH electrocatalyst electropolymerized on the surface of the electrode. The methanol biofuel/air cell resulted in a maximum power density of 261±7.6,,W/cm2 and current density of 845±35.5,,A/cm2. This system was characterized for the effects of degree of oxidation, temperature, pH, and concentration of fuel and NAD. [source] Enhancement of the NAD(P)(H) Pool in Escherichia coli for BiotransformationENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 4 2007F. Heuser Abstract In pyridine nucleotide-dependent, reductive whole cell biotransformation with resting cells of Escherichia coli, the availability of intracellular NAD(P)(H) is a pivotal point for an efficient and highly productive substrate conversion. The question whether an increase of the intracellular NAD(P)(H) concentration could increase the productivity was discussed controversially in the past. This is the first report on an E. coli strain with an increased NAD(P)(H) pool which was tested in a reductive biotransformation system for an increased productivity. Biotransformation was performed with a strain overexpressing a gene encoding an (R)-specific alcohol dehydrogenase for the stereospecific, NADPH-dependent reduction of methyl acetoacetate (MAA) to (R)-methyl-3-hydroxybutanoate (MHB). Cofactor regeneration was implemented via glucose oxidation by coexpression of a gene encoding glucose dehydrogenase. The specific MHB productivity (mmol mg,1 cell dry weight,1h,1) enabled a comparison between the E. coli,BL21(DE3) wild-type and a genetically modified strain. The enhancement of the NAD(P)(H) pool was achieved by genetic manipulation of the NAD(H) biosynthetic pathways. After simultaneous overexpression of the pncB and nadE genes, encoding nicotinic acid phosphoribosyltransferase and NAD synthetase, measurements of the total NAD(P)(H) pool, sizes showed a 7-fold and 2-fold increased intracellular concentration of NAD(H) and NADP(H), respectively. However, the implementation of an E.,coli strain carrying a genomically integrated pncB gene with an upstream T7,promoter for biotransformation did not result in reproducible increased specific cell productivity. [source] Microbial community structure of ethanol type fermentation in bio-hydrogen productionENVIRONMENTAL MICROBIOLOGY, Issue 5 2007Nanqi Ren Summary Three continuous stirred-tank reactors (CSTRs) were used for H2 production from molasses wastewater at influent pH of 6.0,6.5 (reactor A), 5.5,6.0 (reactor B), or 4.0,4.5 (reactor C). After operation for 28 days, the microbial community formed ethanol type (C), propionate type (A) and ethanol-butyrate-mixed type (B) fermentation. The H2 production rate was the highest for ethanol type fermentation, 0.40 l (g VSS),1 day,1 or 0.45 l H2 (g COD removed),1. Microbial community dynamics and diversity were analysed using double-gradient denaturing gradient gel electrophoresis (DG-DGGE). Denaturing gradient gel electrophoresis profiles indicated that the community structures changed quickly in the first 14 days. Phylogenetic analysis indicated that the dominant bacterial groups were low G+C Gram-positive bacteria, Bacteroides, ,-Proteobacteria and Actinobacteria; ,-Proteobacteria, ,-Proteobacteria, ,-Proteobacteria and Spirochaetes were also presented as minor groups in the three reactors. H2 -producing bacteria were affiliated with Ethanoligenens, Acetanaerobacterium, Clostridium, Megasphaera, Citrobacter and Bacteroides. An ethanol-based H2 -producing bacterium, Ethanoligenens harbinense CGMCC1152, was isolated from reactor C and visualized using fluorescence in situ hybridization (FISH) to be 19% of the eubacteria in reactor C. In addition, isoenzyme activity staining for alcohol dehydrogenase (ADH) supported that the majority of ethanol-producing bacteria were affiliated with Ethanoligenens in the microbial community. [source] Targeting clusters of transferred genes in Thermotoga maritimaENVIRONMENTAL MICROBIOLOGY, Issue 11 2003Camilla L. Nesbř Summary We screened a Thermotoga sp. strain RQ2 lambda library for genes present in that strain but absent from the closely related completely sequenced relative Thermotoga maritima strain MSB8, by using probes generated in an earlier genomic subtraction study. Five lambda insert fragments were sequenced, containing, respectively, an archaeal type ATPase operon, rhamnose biosynthetic genes, ORFs with similarity to an arabinosidase, a Thermotoga sp. strain RQ2-specific alcohol dehydrogenase and a novel archaeal Mut-S homologue. All but one of these fragments contained additional Thermotoga sp. strain RQ2-specific sequences not screened for, suggesting that many such strain-specific genes will be found clustered in the genome. Moreover, phylogenetic analyses, phylogenetic distribution and/or G + C content suggests that all the Thermotoga sp. strain RQ2 specific sequences in the sequenced lambda clones have been acquired by lateral gene transfer. We suggest that the use of strain-specific small insert clones obtained by subtractive hybridization to target larger inserts for sequencing is an efficient, economical way to identify environmentally (or clinically) relevant interstrain differences and novel gene clusters, and will be invaluable in comparative genomics. [source] Elemental sulfur: Toxicity in vivo and in vitro to bacterial luciferase, in vitro yeast alcohol dehydrogenase, and bovine liver catalaseENVIRONMENTAL TOXICOLOGY, Issue 4 2004Anolda, etkauskait Abstract The aim of this research was to analyze the effects and the modes of action of elemental sulfur (S0) in bioluminescence and respiration of Vibrio fischeri cells and the enzymes crude luciferase, pure catalase, and alcohol dehydrogenase (ADH). Metallic copper removed sulfur and reduced the toxicity of acetone extracts of sediment samples analyzed in the bioluminescence test. The sulfur inhibition of cell bioluminescence was noncompetitive with decanal, the luciferase substrate; reversible, with maximum toxicity after 15 min (EC50 = 11.8 ,g/L); and almost totally recovered after 2 h. In vitro preincubation of crude luciferase extract with sulfur (0.28 ppm) weakly inhibited bioluminescence at 5 min, but at 30 min the inhibition reached 60%. Increasing the concentration of sulfur in the parts per million concentration range in vitro decreased bioluminescence, which was not constant, but depended on exposure time, and no dead-end/total inhibition was observed. The redox state of enzymes in the in vitro system significantly affected inhibition. Hydrogen peroxide restored fully and the reducing agent dithiothreitol, itself toxic, restored only partially luciferase activity in the presence of sulfur. Sulfur (5.5 ppm) slightly inhibited ADH and catalase, and dithiothreitol enhanced sulfur inhibition. High sulfur concentrations (2.2 ppm) inhibited the bioluminescence and enhanced the respiration rate of V. fischeri cells. Elemental sulfur data were interpreted to show that sulfur acted on at least a few V. fischeri cell sites: reversibly modifying luciferase at sites sensitive to/protected by oxidative and reducing agents and by affecting electron transport processes, resulting in enhanced oxygen consumption. Sulfur together with an enzyme reducing agent inhibited the oxidoreductive enzymes ADH and catalase, which have SH groups, metal ion cofactors, or heme, respectively, in their active centers. © 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 372,386, 2004. [source] New Bis(mercaptoimidazolyl)(pyrazolyl)borate Ligands and Their Zinc Complex ChemistryEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 13 2003Mouhai Shu Abstract Nine new tripodal NS2 ligands of the bis(mercaptoimidazolyl)(pyrazolyl)borate type with varying 3-R-mercaptoimidazolyl moieties were prepared as their potassium salts. Treatment with zinc salts yielded the complex types L·Zn,Cl, L·Zn,I, L·Zn,ONO2, L·Zn,OClO3 and [L·Zn(imidazole)]ClO4. Attempts at the formation of L·Zn,OH or cationic L·Zn complexes resulted in dismutation and formation of ZnL2 complexes. Hydrolytic destruction yielded one [OZn4(thiooimidazolate)6] complex. The ZnS2NO coordination which is present in the enzyme-substrate complex of alcohol dehydrogenase could be successfully modelled by an [L·Zn(C2H5OH)]+ complex. The L·Zn,X complexes showed very low catalytic activity in the dehydrogenation of 2-propanol or the hydrogenation of p -nitrobenzaldehyde. The new compounds were identified by a total of 12 structure determinations. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source] Aldehydes release zinc from proteins.FEBS JOURNAL, Issue 18 2006A pathway from oxidative stress/lipid peroxidation to cellular functions of zinc Oxidative stress, lipid peroxidation, hyperglycemia-induced glycations and environmental exposures increase the cellular concentrations of aldehydes. A novel aspect of the molecular actions of aldehydes, e.g. acetaldehyde and acrolein, is their reaction with the cysteine ligands of zinc sites in proteins and concomitant zinc release. Stoichiometric amounts of acrolein release zinc from zinc,thiolate coordination sites in proteins such as metallothionein and alcohol dehydrogenase. Aldehydes also release zinc intracellularly in cultured human hepatoma (HepG2) cells and interfere with zinc-dependent signaling processes such as gene expression and phosphorylation. Thus both acetaldehyde and acrolein induce the expression of metallothionein and modulate protein tyrosine phosphatase activity in a zinc-dependent way. Since minute changes in the availability of cellular zinc have potent effects, zinc release is a mechanism of amplification that may account for many of the biological effects of aldehydes. The zinc-releasing activity of aldehydes establishes relationships among cellular zinc, the functions of endogenous and xenobiotic aldehydes, and redox stress, with implications for pathobiochemical and toxicologic mechanisms. [source] Characterization of cinnamyl alcohol dehydrogenase of Helicobacter pyloriFEBS JOURNAL, Issue 5 2005An aldehyde dismutating enzyme Cinnamyl alcohol dehydrogenases (CAD; 1.1.1.195) catalyse the reversible conversion of p -hydroxycinnamaldehydes to their corresponding alcohols, leading to the biosynthesis of lignin in plants. Outside of plants their role is less defined. The gene for cinnamyl alcohol dehydrogenase from Helicobacter pylori (HpCAD) was cloned in Escherichia coli and the recombinant enzyme characterized for substrate specificity. The enzyme is a monomer of 42.5 kDa found predominantly in the cytosol of the bacterium. It is specific for NADP(H) as cofactor and has a broad substrate specificity for alcohol and aldehyde substrates. Its substrate specificity is similar to the well-characterized plant enzymes. High substrate inhibition was observed and a mechanism of competitive inhibition proposed. The enzyme was found to be capable of catalysing the dismutation of benzaldehyde to benzyl alcohol and benzoic acid. This dismutation reaction has not been shown previously for this class of alcohol dehydrogenase and provides the bacterium with a means of reducing aldehyde concentration within the cell. [source] The specificity of alcohol dehydrogenase with cis -retinoidsFEBS JOURNAL, Issue 9 2004Activity with 11- cis -retinol, localization in retina Studies in knockout mice support the involvement of alcohol dehydrogenases ADH1 and ADH4 in retinoid metabolism, although kinetics with retinoids are not known for the mouse enzymes. Moreover, a role of alcohol dehydrogenase (ADH) in the eye retinoid interconversions cannot be ascertained due to the lack of information on the kinetics with 11- cis -retinoids. We report here the kinetics of human ADH1B1, ADH1B2, ADH4, and mouse ADH1 and ADH4 with all- trans -, 7- cis -, 9- cis -, 11- cis - and 13- cis -isomers of retinol and retinal. These retinoids are substrates for all enzymes tested, except the 13- cis isomers which are not used by ADH1. In general, human and mouse ADH4 exhibit similar activity, higher than that of ADH1, while mouse ADH1 is more efficient than the homologous human enzymes. All tested ADHs use 11- cis -retinoids efficiently. ADH4 shows much higher kcat/Km values for 11- cis -retinol oxidation than for 11- cis -retinal reduction, a unique property among mammalian ADHs for any alcohol/aldehyde substrate pair. Docking simulations and the kinetic properties of the human ADH4 M141L mutant demonstrated that residue 141, in the middle region of the active site, is essential for such ADH4 specificity. The distinct kinetics of ADH4 with 11- cis -retinol, its wide specificity with retinol isomers and its immunolocalization in several retinal cell layers, including pigment epithelium, support a role of this enzyme in the various retinol oxidations that occur in the retina. Cytosolic ADH4 activity may complement the isomer-specific microsomal enzymes involved in photopigment regeneration and retinoic acid synthesis. [source] Relationships between the ethanol utilization (alc) pathway and unrelated catabolic pathways in Aspergillus nidulansFEBS JOURNAL, Issue 17 2003Michel Flipphi The ethanol utilization pathway in Aspergillus nidulans is a model system, which has been thoroughly elucidated at the biochemical, genetic and molecular levels. Three main elements are involved: (a) high level expression of the positively autoregulated activator AlcR; (b) the strong promoters of the structural genes for alcohol dehydrogenase (alcA) and aldehyde dehydrogenase (aldA); and (c) powerful activation of AlcR by the physiological inducer, acetaldehyde, produced from growth substrates such as ethanol and l -threonine. We have previously characterized the chemical features of direct inducers of the alc regulon. These studies allowed us to predict which type of carbonyl compounds might induce the system. In this study we have determined that catabolism of different amino acids, such as l -valine, l -isoleucine, l -arginine and l -proline, produces aldehydes that are either not accumulated or fail to induce the alc system. On the other hand, catabolism of d -galacturonic acid and putrescine, during which aldehydes are transiently accumulated, gives rise to induction of the alc genes. We show that the formation of a direct inducer from carboxylic esters does not depend on alcA -encoded alcohol dehydrogenase I or on AlcR, and suggest that a cytochrome P450 might be responsible for the initial formation of a physiological aldehyde inducer. [source] Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase familyFEBS JOURNAL, Issue 22 2002Carol Larroy A new NADP(H)-dependent alcohol dehydrogenase (the YCR105W gene product, ADHVII) has been identified in Saccharomyces cerevisiae. The enzyme has been purified to homogeneity and found to be a homodimer of 40 kDa subunits and a pI of 6.2,6.4. ADHVII shows a broad substrate specificity similar to the recently characterized ADHVI (64% identity), although they show some differences in kinetic properties. ADHVI and ADHVII are the only members of the cinnamyl alcohol dehydrogenase family in yeast. Simultaneous deletion of ADH6 and ADH7 was not lethal for the yeast. Both enzymes could participate in the synthesis of fusel alcohols, ligninolysis and NADP(H) homeostasis. [source] KlADH3, a gene encoding a mitochondrial alcohol dehydrogenase, affects respiratory metabolism and cytochrome content in Kluyveromyces lactisFEMS YEAST RESEARCH, Issue 8 2006Michele Saliola Abstract A Kluyveromyces lactis strain, harbouring KlADH3 as the unique alcohol dehydrogenase (ADH) gene, was used in a genetic screen on allyl alcohol to isolate mutants deregulated in the expression of this gene. Here we report the characterization of some mutants that lacked or had highly reduced amounts of KlAdh3p activity; in addition, these mutants showed alterations in glucose metabolism, reduced respiration and reduced cytochrome content. Our results confirm that the KlAdh3p activity contributes to the reoxidation of cytosolic NAD(P)H feeding the respiratory chain through KlNdi1p, the mitochondrial internal transdehydrogenase. The low levels of KlAdh3p in two of the mutants were associated with mutations in KlSDH1, one of the genes of complex II, suggesting signalling between the respiratory chain and expression of the KlADH3 gene. [source] Biocatalytic aldehyde reduction using tailor-made whole-cell catalysts: a novel synthesis of the aroma chemical cinnamyl alcohol,FLAVOUR AND FRAGRANCE JOURNAL, Issue 3 2007Francoise Chamouleau Abstract A biocatalytic method for the synthesis of the aroma chemical cinnamyl alcohol by means of a wholecell-catalysed reduction of cinnamyl aldehyde has been developed. As a biocatalyst, recombinant whole cells overexpressing an alcohol dehydrogenase from Lactobacillus kefir and a glucose dehydrogenase from Thermoplasma acidophilum have been used in combination with d- glucose as co-substrate. The reduction process proceeds with a conversion of 98%, even at a high substrate input of 166 g/l cinnamyl aldehyde, and gives a yield of 77% of the desired product, cinnamyl alcohol. In addition to high product concentrations, further advantages of this approach are the use of a low-cost whole-cell catalyst, the high purity of the product, as well as the fact that there is no need for the addition of external co-factor in the biotransformation step. Copyright © 2007 John Wiley & Sons, Ltd. [source] Maintenance of the alcohol dehydrogenase polymorphism in Tiger Salamanders, II.FUNCTIONAL ECOLOGY, Issue 1 2000Differences in biochemical function among allozymes Abstract 1.,Previous studies of Tiger Salamanders demonstrated that variation in alcohol dehydrogenase (Adh) contributed significantly to associations between multilocus heterozygosity and oxygen consumption traits, and that Adh variation was associated with levels of pond-oxygen and metamorphic ability in extreme oxygen environments. Here Adh allozymes are characterized kinetically, and relationships between Adh and oxygen-related physiological traits (ATP/Hb, 2,3-DPG/Hb) are measured. 2.,Kinetic differences were measured among Adh allozymes in the acetaldehyde-to-ethanol direction: kcat/Km ratios (the catalytic constant divided by the Michaelis,Menton constant) were significantly higher in Adh-SF than the other two genotypes, and in Adh-SS compared with Adh-FF. No significant differences were measured in the ethanol to acetaldehyde direction. 3.,Adh-SS had a significantly higher ATP/Hb than Adh-FF, with the Adh-SF intermediate. In addition, a significant interaction between Hb and body mass was measured, such that Adh-FF showed a negative relationship between Hb concentration and body mass while the other two genotypes showed a positive relationship. 4.,These results are consistent with the hypothesis that variation at the Adh locus has adaptive and physiological significance, and that functional differences among Adh allozymes partly explain significant associations between multilocus genotype and organismal traits. [source] Impact of inter-individual differences in drug metabolism and pharmacokinetics on safety evaluationFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2004J.L.C.M. Dorne Abstract Safety evaluation aims to assess the dose,response relationship to determine a dose/level of exposure for food contaminants below which no deleterious effect is measurable that is ,without appreciable health risk' when consumed daily over a lifetime. These safe levels, such as the acceptable daily intake (ADI) have been derived from animal studies using surrogates for the threshold such as the no-observed-adverse-effect-level (NOAEL). The extrapolation from the NOAEL to the human safe intake uses a 100-fold uncertainty factor, defined as the product of two 10-fold factors allowing for human variability and interspecies differences. The 10-fold factor for human variability has been further subdivided into two factors of 100.5 (3.16) to cover toxicokinetics and toxicodynamics and this subdivsion allows for the replacement of an uncertainty factor with a chemical-specific adjustment factor (CSAF) when compound-specific data are available. Recently, an analysis of human variability in pharmacokinetics for phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferase, glucuronidation, glycine conjugation, sulphation) and renal excretion was used to derive pathway-related uncertainty factors in subgroups of the human population (healthy adults, effects of ethnicity and age). Overall, the pathway-related uncertainty factors (99th centile) were above the toxicokinetic uncertainty factor for healthy adults exposed to xenobiotics handled by polymorphic metabolic pathways (and assuming the parent compound was the proximate toxicant) such as CYP2D6 poor metabolizers (26), CYP2C19 poor metabolizers (52) and NAT-2 slow acetylators (5.2). Neonates were the most susceptible subgroup of the population for pathways with available data [CYP1A2 and glucuronidation (12), CYP3A4 (14), glycine conjugation (28)]. Data for polymorphic pathways were not available in neonates but uncertainty factors of up to 45 and 9 would allow for the variability observed in children for CYP2D6 and CYP2C19 metabolism, respectively. This review presents an overview on the history of uncertainty factors, the main conclusions drawn from the analysis of inter-individual differences in metabolism and pharmacokinetics, the development of pathway-related uncertainty factors and their use in chemical risk assessment. [source] Involvement of RNase G in in vivo mRNA metabolism in Escherichia coliGENES TO CELLS, Issue 5 2001Genryou Umitsuki Background Escherichia coli rng gene (previously called cafA) encodes a novel RNase, named RNase G, which is involved in the 5, end-processing of 16S rRNA. In rng mutant cells, a precursor form of 16S rRNA, 16.3S rRNA, is accumulated. Here we report a role of RNase G in the in vivo mRNA metabolism. Results We found that rng::cat mutant strains overproduced a protein of about 100 kDa. N-terminal amino acid sequencing of this protein showed that it was identical to the fermentative alcohol dehydrogenase, the product of the adhE gene located at 28 min on the E. coli genetic map. The level of adhE mRNA was significantly higher in the rng::cat mutant strain than that in its parental strain, while such differences were not seen in other genes we examined. A rifampicin-chase experiment revealed that the half-life of adhE mRNA was 2.5-fold longer in the rng::cat disruptant than in the wild-type. Conclusion These results indicate that, in addition to rRNA processing, RNase G is involved in in vivo mRNA degradation in E. coli. [source] Preparation of Protamine,Titania Microcapsules Through Synergy Between Layer-by-Layer Assembly and Biomimetic MineralizationADVANCED FUNCTIONAL MATERIALS, Issue 1 2009Yanjun Jiang Abstract A novel approach combining layer-by-layer (LbL) assembly with biomimetic mineralization is proposed to prepare protamine,titiania hybrid microcapsules. More specifically, these microcapsules are fabricated by alternative deposition of positively charged protamine layers and negatively charged titania layers on the surface of CaCO3 microparticles, followed by dissolution of the CaCO3 microparticles using EDTA. During the deposition process, the protamine layer induces the hydrolysis and condensation of a titania precursor, to form the titania layer. Thereafter, the negatively charged titania layer allows a new cycle of deposition step of the protamine layer, which ensures a continuous LbL process. The morphology, structure, and chemical composition of the microcapsules are characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, and X-ray photoelectron spectroscopy. Moreover, these protamine,titania hybrid microcapsules are first employed as the carrier for the immobilization of yeast alcohol dehydrogenase (YADH), and the encapsulated YADH displays enhanced recycling stability. This approach may open a facile, general, and efficient way to prepare organic,inorganic hybrid materials with different compositions and shapes. [source] An Ethanol/O2 Biofuel Cell Based on an Electropolymerized Bilirubin Oxidase/Pt Nanoparticle Bioelectrocatalytic O2 -Reduction CathodeADVANCED MATERIALS, Issue 42 2009Yi-Ming Yan An effective O2 -reducing bioelectrocatalytic electrode is prepared by the electrochemical crosslinking of thioaniline-modified Pt nanoparticles (NPs) and thioaniline-functionalized bilirubin oxidase (BOD). An O2/ethanol biofuel cell element is constructed by integrating the Pt NP/BOD cathode and an electrically contacted alcohol dehydrogenase (AlcDH)-based anode. [source] Chemo- and Stereodivergent Preparation of Terminal Epoxides and Bromohydrins through One-Pot Biocatalysed Reactions: Access to Enantiopure Five- and Six-Membered N-HeterocyclesADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 10 2010Fabricio Abstract Different enantiopure terminal epoxides or bromohydrins have chemoselectively been synthesised in one-pot starting from the corresponding ,-bromo ketones through alcohol dehydrogenase (ADH)-catalysed processes adding an organic co-solvent and tuning appropriately the medium pH and the temperature. Thus, at neutral pH enantiopure bromohydrins were obtained while using basic conditions (pH,9.5,10) epoxides were isolated as the main product. Furthermore, by simple selection of the biocatalyst, chemo- and stereodivergent transformations were achieved to obtain, e.g., enantiopure prolinol or piperidin-3-ol. [source] Mitochondrial A, A potential cause of metabolic dysfunction in Alzheimer's diseaseIUBMB LIFE, Issue 12 2006Xi Chen Abstract Deficits in mitochondrial function are a characteristic finding in Alzheimer's disease (AD), though the mechanism remains to be clarified. Recent studies revealed that amyloid , peptide (A,) gains access into mitochondrial matrix, which was much more pronounced in both AD brain and transgenic mutant APP mice than in normal controls. A, progressively accumulates in mitochondria and mediates mitochondrial toxicity. Interaction of mitochondrial A, with mitochondrial enzymes such as amyloid , binding alcohol dehydrogenase (ABAD) exaggerates mitochondrial stress by inhibiting the enzyme activity, releasing reactive oxygen species (ROS), and affecting glycolytic, Krebs cycle and/or the respiratory chain pathways through the accumulation of deleterious intermediate metabolites. The pathways proposed may play a key role in the pathogenesis of this devastating neurodegenerative disorder, Alzheimer's disease. iubmb Life, 58: 686-694, 2006 [source] Enantioselective Reduction of 4-Fluoroacetophenone at High Substrate Concentration using a Tailor-Made Recombinant Whole-Cell CatalystADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 4-5 2007Harald Gröger Abstract A practical and highly efficient biocatalytic synthesis of optically active (R)-4-fluorophenylethan-1-ol has been developed based on reduction of the corresponding 4-fluoroacetophenone in the presence of a tailor-made recombinant whole-cell biocatalyst, containing an alcohol dehydrogenase and a glucose dehydrogenase. The reaction proceeds in a pure aqueous solvent media at a substrate concentration of ca. 0.5,M, and gives the desired product with high conversion (>95,%), good yield (87,%) and with an excellent enantioselectivity of >99,% ee. In addition, activity tests further showed that also the analogous 2- and 3-fluoroacetophenones are promising substrates. [source] |