Alanine Substitution (alanine + substitution)

Distribution by Scientific Domains


Selected Abstracts


Mechanism of activation of the double-stranded-RNA-dependent protein kinase, PKR

FEBS JOURNAL, Issue 13 2001
Role of dimerization, cellular localization in the stimulation of PKR phosphorylation of eukaryotic initiation factor-2 (eIF2)
An important defense against viral infection involves inhibition of translation by PKR phosphorylation of the , subunit of eIF2. Binding of viral dsRNAs to two dsRNA-binding domains (dsRBDs) in PKR leads to relief of an inhibitory region and activation of eIF2 kinase activity. Interestingly, while deletion of the regulatory region of PKR significantly induces activity in vitro, the truncated kinase does not inhibit translation in vivo, suggesting that these sequences carry out additional functions required for PKR control. To delineate these functions and determine the order of events leading to activation of PKR, we fused truncated PKR to domains of known function and assayed the chimeras for in vivo activity. We found that fusion of a heterologous dimerization domain with the PKR catalytic domain enhanced autophosphorylation and eIF2 kinase function in vivo. The dsRBDs also mediate ribosome association and we proposed that such targeting increases the localized concentration of PKR, enhancing interaction between PKR molecules. We addressed this premise by linking the truncated PKR to RAS sequences mediating farnesylation and membrane localization and found that the fusion protein was functional in vivo. These results indicate that cellular localization along with oligomerization enhances interaction between PKR molecules. Alanine substitution for the phosphorylation site, threonine 446, impeded in vivo and in vitro activity of the PKR fusion proteins, while aspartate or glutamate substitutions partially restored the function of the truncated kinase. These results indicate that both dimerization and cellular localization play a role in transient protein,protein interactions and that trans -autophosphorylation is the final step in the mechanism of activation of PKR. [source]


Functional analysis of NsrR, a nitric oxide-sensing Rrf2 repressor in Neisseria gonorrhoeae

MOLECULAR MICROBIOLOGY, Issue 1 2009
Vincent M. Isabella
Summary Nitric oxide (NO) has been shown to be an important component of the human immune response, and as such, it is important to understand how pathogenic organisms respond to its presence. In Neisseria gonorrhoeae, recent work has revealed that NsrR, an Rrf2-type transcriptional repressor, can sense NO and control the expression of genes responsible for NO metabolism. A highly pure extract of epitope-tagged NsrR was isolated and mass spectroscopic analysis suggested that the protein contained a [2Fe,2S] cluster. NsrR/DNA interactions were thoroughly analysed in vitro. Using EMSA analysis, NsrR::FLAG was shown to interact with predicted operators in the norB, aniA and nsrR upstream regions with a Kd of 7, 19 and 35 nM respectively. DNase I footprint analysis was performed on the upstream regions of norB and nsrR, where NsrR was shown to protect the predicted 29 bp binding sites. The presence of exogenously added NO inhibited DNA binding by NsrR. Alanine substitution of C90, C97 or C103 in NsrR abrogated repression of norB::lacZ and inhibited DNA binding, consistent with their presumed role in co-ordination of a NO-sensitive Fe,S centre required for DNA binding. [source]


Mutation analysis of carbamoyl phosphate synthetase: Does the structurally conserved glutamine amidotransferase triad act as a functional dyad?

PROTEIN SCIENCE, Issue 7 2008
Emily J. Hart
Abstract Evolutionarily conserved triad glutamine amidotransferase (GAT) domains catalyze the cleavage of glutamine to yield ammonia and sequester the ammonia in a tunnel until delivery to a variety of acceptor substrates in synthetase domains of variable structure. Whereas a conserved hydrolytic triad (Cys/His/Glu) is observed in the solved GAT structures, the specificity pocket for glutamine is not apparent, presumably because its formation is dependent on the conformational change that couples acceptor availability to a greatly increased rate of glutamine cleavage. In Escherichia coli carbamoyl phosphate synthetase (eCPS), one of the best characterized triad GAT members, the Cys269 and His353 triad residues are essential for glutamine hydrolysis, whereas Glu355 is not critical for eCPS activity. To further define the glutamine-binding pocket and possibly identify an alternative member of the catalytic triad that is situated for this role in the coupled conformation, we have analyzed mutations at Gln310, Asn311, Asp334, and Gln351, four conserved, but not yet analyzed residues that might potentially function as the third triad member. Alanine substitution of Gln351, Asn311, and Gln310 yielded respective Km increases of 145, 27, and 15, suggesting that Gln351 plays a key role in glutamine binding in the coupled conformation, and that Asn311 and Gln310 make less significant contributions. None of the mutant kcat values varied significantly from those for wild-type eCPS. Combined with previously reported data on other conserved eCPS residues, these results strongly suggest that Cys269 and His353 function as a catalytic dyad in the GAT site of eCPS. [source]


d -Alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract

ENVIRONMENTAL MICROBIOLOGY, Issue 7 2007
Jens Walter
Summary The dlt operon of Gram-positive bacteria encodes proteins required for the incorporation of d -alanine esters into cell wall-associated teichoic acids (TA). d -Alanylation of TA has been shown to be important for acid tolerance, resistance to antimicrobial peptides, adhesion, biofilm formation, and virulence of a variety of pathogenic organisms. The aim of this study was to determine the importance of d -alanylation for colonization of the gastrointestinal tract by Lactobacillus reuteri 100-23. Insertional inactivation of the dltA gene resulted in complete depletion of d -alanine substitution of lipoteichoic acids. The dlt mutant had similar growth characteristics as the wild type under standard in vitro conditions, but formed lower population sizes in the gastrointestinal tract of ex- Lactobacillus -free mice, and was almost eliminated from the habitat in competition experiments with the parental strain. In contrast to the wild type, the dlt mutant was unable to form a biofilm on the forestomach epithelium during gut colonization. Transmission electron microscope observations showed evidence of cell wall damage of mutant bacteria present in the forestomach. The dlt mutant had impaired growth under acidic culture conditions and increased susceptibility to the cationic peptide nisin relative to the wild type. Ex vivo adherence of the dlt mutant to the forestomach epithelium was not impaired. This study showed that d -alanylation is an important cell function of L. reuteri that seems to protect this commensal organism against the hostile conditions prevailing in the murine forestomach. [source]


A role of the C-terminus of aquaporin 4 in its membrane expression in cultured astrocytes

GENES TO CELLS, Issue 7 2002
Ken-ichi Nakahama
Background: Aquaporin 4 (AQP4) is a predominant water channel protein in mammalian brains, which is localized in the astrocyte plasma membrane. Membrane targeting of AQP4 is essential to perform its function. The mechanism(s) of membrane targeting is not clear in astrocytes. Results: We investigated the role of the C-terminus of AQP4 (short isoform) in its membrane targeting by an expression study of C-terminal mutants of AQP4 in cultured astrocytes. The deletion of 26 C-terminal residues of AQP4 (AQP4,276,301aa) results in the intracellular localization of the protein. However, smaller deletions than 21 C-terminal residues did not alter its plasma membrane localization. These results suggest that C-terminal residues between Val276 and Ile280 play an important role in the expression of AQP4 in the plasma membrane. However, the plasma membrane localization of the AQP4(A276AAAA280) mutant (alanine substitution of Val276 -Ile280 of AQP4) suggests that another signal for membrane targeting exists in the C-terminus of AQP4. The deletion or point mutations of the PDZ binding motif of the AQP4(A276AAAA280) mutant resulted in the intracellular localization of the proteins. These results suggest that the PDZ binding motif may also be involved in the membrane targeting of AQP4. Conclusions: We found that the C-terminal sequence of AQP4 contains two important signals for membrane expression of AQP4 in cultured astrocytes. One is a hydrophobic domain and the other is a PDZ binding motif that exists in the C-terminus. [source]


Channel properties of template assembled alamethicin tetramers,

JOURNAL OF PEPTIDE SCIENCE, Issue 11-12 2003
Dr Hervé Duclohier
Abstract The multiple conductance levels displayed by the antibiotic alamethicin in planar lipid bilayers is explained by a dynamic ,barrel-stave' model, the conducting pore resulting from the aggregation of up to ten helical amphipathic helical monomers. However, the precise assignment of an oligomerization state to a particular single-channel conductance substate is far from being experimentally clear. In addition, it could be useful to tailor a given channel geometry to selectively allow the permeation of solutes with different molecular sizes, whilst retaining a high voltage-dependence. To control the aggregation state of the channel, the TASP (template assembled synthetic proteins) strategy was applied to synthesize structurally defined oligomers, i.e. dimer, trimer, tetramer. The modulation of conductance properties of three alamethicin tetramers with the length and flexibility of the linkers of the ,open' or linear template is described. It is shown that the introduction of an alanine between the contiguous lysines to which are tethered C -terminally modified alamethicin helical monomers stabilizes the open channel states, whereas the alanine substitution by Pro-Gly, a reverse beta-turn promoting motif, increases voltage-dependence and leads to single-channel conductance values more in line with the expected ones from a tetrameric bundle. Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd. [source]


A novel functional role for the highly conserved , -subunit KVGFFKR motif distinct from integrin ,IIb,3 activation processes

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 8 2006
K. AYLWARD
Summary.,Background: The highly conserved integrin , -subunit membrane-proximal motif KVGFFKR plays a decisive role in modulating the activation of integrin ,IIb,3. Previously, we have shown that a platelet permeable palmityl (pal)-peptide with this seven amino acid sequence can directly activate ,IIb,3 leading to platelet aggregation. Objectives: To investigate further the role of the KVGFFKR motif in integrin ,IIb,3 function. Methods: We used two sequence-specific complementary model systems, palmityl pal-peptides in platelets, and mutant ,IIb,3 -expressing Chinese Hamster Ovary (CHO) cell lines. Results: In platelets we show that the two phenylalanine amino acids in pal-KVGFFKR (pal-FF) peptide are critical for stimulating platelet aggregation. Pal-FF peptide treatment of platelets also gives rise to a tyrosine phosphorylation signal despite the presence of inhibitors of fibrinogen binding. In CHO cells, a double alanine substitution, ,IIb(F992A, F993A),3, induces constitutive integrin activation but prevents actin stress fiber formation upon adhesion to fibrinogen, suggesting that ,IIb,3 -mediated cytoskeletal reorganization is also dependent on F992 and F993. This further highlights a critical role for the two phenylalanine residues in both of these ,IIb,3 -mediated processes. Conclusion: In addition to regulating integrin ,IIb,3 activation state, the KVGFFKR motif also influences cytoskeletal reorganization. This activity is critically determined by F992 and F993 within the seven amino acid sequence. [source]


Dimer-induced signal propagation in Spo0A

MOLECULAR MICROBIOLOGY, Issue 3 2004
K. Muchová
Summary Spo0A, the response regulator protein controlling the initiation of sporulation in Bacillus, has two distinct domains, an N-terminal phosphoacceptor (or receiver) domain and a C-terminal DNA-binding (or effector) domain. The phosphoacceptor domain mediates dimerization of Spo0A on phosphorylation. A comparison of the crystal structures of phosphorylated and unphosphorylated response regulators suggests a mechanism of activation in which structural changes originating at the phosphorylatable aspartate extend to the ,4,5,5 surface of the protein. In particular, the data show an important role in downstream signalling for a conserved aromatic residue (Phe-105 in Spo0A), the conformation of which alters upon phosphorylation. In this study, we have prepared a Phe-105 to Ala mutant to probe the contribution of this residue to Spo0A function. We have also made an alanine substitution of the neighbouring residue Tyr-104 that is absolutely conserved in the Spo0As of spore-forming Bacilli. The spo0A(Y104A) and spo0A(F105A) alleles severely impair sporulation in vivo. In vitro phosphorylation of the purified proteins by phosphoramidate is unaffected, but dimerization and DNA binding are abolished by the mutations. We have identified intragenic suppressor mutations of spo0A(F105A) and shown that these second-site mutations in the purified proteins restore phosphorylation-dependent dimer formation. Our data support a model in which dimerization and signal transduction between the two domains of Spo0A are mediated principally by the ,4,5,5 signalling surface in the receiver domain. [source]


Bovine melanocortin receptor 4: cDNA sequence, polymorphisms and mapping

ANIMAL GENETICS, Issue 4 2001
A. Haegeman
A cDNA encoding the bovine melanocortin receptor 4 (MC4R) was cloned and sequenced. Comparing human, pig and rat homologues showed a 87, 85 and 89% identity on the DNA level, respectively, and over 90% on the protein level. The bovine MC4R gene was mapped to BTU 24 by radiation hybrid mapping. Two nucleotide changes were identified by single stranded conformation polymorphism (SSCP) and sequencing. The substitutions proved to be a T to C and G (allele B) to A (allele A) resulting, respectively, in a conservative valine to alanine substitution (Val 145 Ala) and an alanine to threonine (Ala 172 Thr). Using PCR-RFLP, 13 different cattle breeds were screened for the presence of the Ala 172 Thr substitution. With the exception of one Red Pied animal, allele A could only be detected in Red Holstein animals. [source]


Sequence-specific recognition of DNA by hydrophobic, alanine-rich mutants of the basic region/leucine zipper motif investigated by fluorescence anisotropy

BIOPOLYMERS, Issue 1 2002
Gregory H. Bird
Abstract We generated minimalist proteins capable of sequence-specific, high-affinity binding of DNA to probe how proteins are used and can be used to recognize DNA. In order to quantify binding affinities and specificities in our protein,DNA system, we used fluorescence anisotropy to measure in situ the thermodynamics of binding of alanine-rich mutants of the GCN4 basic region/leucine zipper (bZIP) domain to DNA duplexes containing target sites AP-1 (5,-TGACTCA-3,) or ATF/CREB (5,-TGACGTCA-3,). We simplified the ,-helical bZIP molecular recognition scaffold by alanine substitution: 4A, 11A, and 18A contain four, eleven, and eighteen alanine mutations in their DNA-binding basic regions, respectively. DNase I footprinting analysis demonstrates that all bZIP mutants retain the sequence-specific DNA-binding function of native GCN4 bZIP. Titration of fluorescein-labeled oligonucleotide duplexes with increasing amounts of protein yielded low nanomolar dissociation constants for all bZIP mutants in complex with the AP-1 and ATF/CREB sites: binding to the nonspecific control duplex was > 1000-fold weaker. Remarkably, the most heavily mutated protein 18A, containing 24 alanines in its 27-residue basic region, still binds AP-1 and ATF/CREB with dissociation constants of 15 and 7.8 nM, respectively. Similarly, wild-type bZIP binds these sites with Kd values of 9.1 and 14 nM. 11A also displays low nanomolar dissociation constants for AP-1 and ATF/CREB, while 4A binds these sites with , 10-fold weaker Kd values. Thus, both DNA-binding specificity and affinity are maintained in all our bZIP derivatives. This Ala-rich scaffold may be useful in design and synthesis of small ,-helical proteins with desired DNA-recognition properties capable of serving as therapeutics targeting transcription. © 2002 Wiley Periodicals, Inc. Biopolymers 65: 10,20, 2002 [source]


NMR-derived model of interconverting conformations of an ICAM-1 inhibitory cyclic nonapeptide

CHEMICAL BIOLOGY & DRUG DESIGN, Issue 3 2003
L.O. Sillerud
Abstract:, We have produced by phage-display a disulfide-linked cyclic nonapeptide (inhibitory peptide-01, IP01), CLLRMRSIC, that binds to intracellular adhesion molecule-1 (ICAM-1) and blocks binding to its counter-structure, leukocyte functional antigen-1 (LFA-1). As a first step towards improving its pharmacologic properties, we have performed a structural and functional analysis of this peptide inhibitor to determine the features relevant to ICAM-1 binding. We report here the solution model of our initial product, IP01, as derived from two-dimensional nuclear magnetic resonance (NMR) restraints and molecular modeling. Distance and dihedral angle restraints, generated from nuclear Overhauser effect spectroscopy (NOESY) and one-dimensional-NMR experiments respectively, were used to generate an ensemble of structures using distance geometry and simulated annealing. Molecular dynamic simulations produced three interconverting conformational families consistent with the NMR-derived constraints. We describe these conformations and their mechanism of interconversion. Furthermore, we have measured the IC50 s of a series of inhibitors generated from IP01 through alanine substitution of each residue. These results show that the L2-L3-R4-M5-R6 segment is functionally active, conformationally flexible, and contains a ,-turn involving residues R4-S7, while the C1-C9-I8-S7 segment is less functionally-active but adopts a more defined solution conformation, consistent with a scaffolding function. This model will be useful for designing nonpeptide-based organic inhibitors with improved pharmacologic properties. [source]


Interdomain side-chain interactions in human ,D crystallin influencing folding and stability

PROTEIN SCIENCE, Issue 8 2005
Shannon L. Flaugh
Abstract Human ,D crystallin (H,D-Crys) is a two domain, ,-sheet eye lens protein that must remain soluble throughout life for lens transparency. Single amino acid substitutions of H,D-Crys are associated with juvenile-onset cataracts. Features of the interface between the two domains conserved among ,-crystallins are a central six-residue hydrophobic cluster, and two pairs of interacting residues flanking the cluster. In H,D-Crys these pairs are Gln54/Gln143 and Arg79/Met147. We previously reported contributions of the hydrophobic cluster residues to protein stability. In this study alanine substitutions of the flanking residue pairs were constructed and analyzed. Equilibrium unfolding/refolding experiments at 37°C revealed a plateau in the unfolding/refolding transitions, suggesting population of a partially folded intermediate with a folded C-terminal domain (C-td) and unfolded N-terminal domain (N-td). The N-td was destabilized by substituting residues from both domains. In contrast, the C-td was not significantly affected by substitutions of either domain. Refolding rates of the N-td were significantly decreased for mutants of either domain. In contrast, refolding rates of the C-td were similar to wild type for mutants of either domain. Therefore, domain interface residues of the folded C-td probably nucleate refolding of the N-td. We suggest that these residues stabilize the native state by shielding the central hydrophobic cluster from solvent. Glutamine and methionine side chains are among the residues covalently damaged in aged and cataractous lenses. Such damage may generate partially unfolded, aggregation- prone conformations of H,D-Crys that could be significant in cataract. [source]


Contributions of hydrophobic domain interface interactions to the folding and stability of human ,D-crystallin

PROTEIN SCIENCE, Issue 3 2005
Shannon L. Flaugh
Abstract Human ,D-crystallin (H,D-Crys) is a monomeric eye lens protein composed of two highly homologous ,-sheet domains. The domains interact through interdomain side chain contacts forming two structurally distinct regions, a central hydrophobic cluster and peripheral residues. The hydrophobic cluster contains Met43, Phe56, and Ile81 from the N-terminal domain (N-td) and Val132, Leu145, and Val170 from the C-terminal domain (C-td). Equilibrium unfolding/refolding of wild-type H,D-Crys in guanidine hydrochloride (GuHCl) was best fit to a three-state model with transition midpoints of 2.2 and 2.8 M GuHCl. The two transitions likely corresponded to sequential unfolding/refolding of the N-td and the C-td. Previous kinetic experiments revealed that the C-td refolds more rapidly than the N-td. We constructed alanine substitutions of the hydrophobic interface residues to analyze their roles in folding and stability. After purification from E. coli, all mutant proteins adopted a native-like structure similar to wild type. The mutants F56A, I81A, V132A, and L145A had a destabilized N-td, causing greater population of the single folded domain intermediate. Compared to wild type, these mutants also had reduced rates for productive refolding of the N-td but not the C-td. These data suggest a refolding pathway where the domain interface residues of the refolded C-td act as a nucleating center for refolding of the N-td. Specificity of domain interface interactions is likely important for preventing incorrect associations in the high protein concentrations of the lens nucleus. [source]