Fine Root Dynamics (fine + root_dynamics)

Distribution by Scientific Domains


Selected Abstracts


Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2 -enrichment: a six-year-minirhizotron study

GLOBAL CHANGE BIOLOGY, Issue 3 2008
SETH G. PRITCHARD
Abstract Efforts to characterize carbon (C) cycling among atmosphere, forest canopy, and soil C pools are hindered by poorly quantified fine root dynamics. We characterized the influence of free-air-CO2 -enrichment (ambient +200 ppm) on fine roots for a period of 6 years (Autumn 1998 through Autumn 2004) in an 18-year-old loblolly pine (Pinus taeda) plantation near Durham, NC, USA using minirhizotrons. Root production and mortality were synchronous processes that peaked most years during spring and early summer. Seasonality of fine root production and mortality was not influenced by atmospheric CO2 availability. Averaged over all 6 years of the study, CO2 enrichment increased average fine root standing crop (+23%), annual root length production (+25%), and annual root length mortality (+36%). Larger increase in mortality compared with production with CO2 enrichment is explained by shorter average fine root lifespans in elevated plots (500 days) compared with controls (574 days). The effects of CO2 -enrichment on fine root proliferation tended to shift from shallow (0,15 cm) to deeper soil depths (15,30) with increasing duration of the study. Diameters of fine roots were initially increased by CO2 -enrichment but this effect diminished over time. Averaged over 6 years, annual fine root NPP was estimated to be 163 g dw m,2 yr,1 in CO2 -enriched plots and 130 g dw m,2 yr,1 in control plots (P= 0.13) corresponding to an average annual additional input of fine root biomass to soil of 33 g m,2 yr,1 in CO2 -enriched plots. A lack of consistent CO2× year effects suggest that the positive effects of CO2 enrichment on fine root growth persisted 6 years following minirhizotron tube installation (8 years following initiation of the CO2 fumigation). Although CO2 -enrichment contributed to extra flow of C into soil in this experiment, the magnitude of the effect was small suggesting only modest potential for fine root processes to directly contribute to soil C storage in south-eastern pine forests. [source]


Environmental control of fine root dynamics in a northern hardwood forest

GLOBAL CHANGE BIOLOGY, Issue 5 2003
GERALDINE L. TIERNEY
Abstract Understanding how exogenous and endogenous factors control the distribution, production and mortality of fine roots is fundamental to assessing the implications of global change, yet our knowledge of control over fine root dynamics remains rudimentary. To improve understanding of these processes, the present study developed regression relationships between environmental variables and fine root dynamics within a northern hardwood forest in New Hampshire, USA, which was experimentally manipulated with a snow removal treatment. Fine roots (< 1 mm diameter) were observed using minirhizotrons for 2 years in sugar maple and yellow birch stands and analyzed in relation to temperature, water and nutrient availability. Fine root dynamics at this site fluctuated seasonally, with growth and mortality peaking during warmer months. Monthly fine root production was strongly associated with mean monthly air temperature and neither soil moisture nor nutrient availability added additional predictive power to this relationship. This relationship exhibited a seasonal temperature hysteresis, which was altered by snow removal treatment. These results suggest that both exogenous and endogenous cues may be important in controlling fine root growth in this system. Proportional fine root mortality was directly associated with mean monthly soil temperature, and proportional fine root mortality during the over-winter interval was strongly related to whether the soil froze. The strong relationship between fine root production and air temperature reported herein contrasts with findings from some hardwood forest sites and indicates that controls on fine root dynamics vary geographically. Future research must more clearly distinguish between endogenous and exogenous control over fine root dynamics in various ecosystems. [source]


Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil

NEW PHYTOLOGIST, Issue 3 2010
Tâmara Thaiz Santana Lima
Summary ,Fine root dynamics is widely recognized as an important biogeochemical process, but there are few data on fine root growth and its response to soil resource availability, especially for tropical forests. ,We evaluated the response of fine root dynamics to altered availability of soil water and nutrients in a 20-yr-old forest regrowth in eastern Amazonia. In one experiment the dry season reduction in soil moisture was alleviated by irrigation. In the other experiment, nutrient supply was reduced by litter removal. We used the ingrowth core technique to measure fine root mass growth, length growth, mortality and specific root length. ,Dry-season irrigation had no significant effect on mass and length of live and dead roots, whereas litter removal reduced mass and length of live roots. For both irrigation and litter removal experiments, root growth was significantly greater in the dry season than in the wet season. ,Increased root growth was associated with decreased soil water availability. However, root growth did not increase in response to nutrient reduction in litter removal plots. Overall, our results suggest that belowground allocation may differ according to the type of soil resource limitation. [source]


Fine root dynamics in a loblolly pine forest are influenced by free-air-CO2 -enrichment: a six-year-minirhizotron study

GLOBAL CHANGE BIOLOGY, Issue 3 2008
SETH G. PRITCHARD
Abstract Efforts to characterize carbon (C) cycling among atmosphere, forest canopy, and soil C pools are hindered by poorly quantified fine root dynamics. We characterized the influence of free-air-CO2 -enrichment (ambient +200 ppm) on fine roots for a period of 6 years (Autumn 1998 through Autumn 2004) in an 18-year-old loblolly pine (Pinus taeda) plantation near Durham, NC, USA using minirhizotrons. Root production and mortality were synchronous processes that peaked most years during spring and early summer. Seasonality of fine root production and mortality was not influenced by atmospheric CO2 availability. Averaged over all 6 years of the study, CO2 enrichment increased average fine root standing crop (+23%), annual root length production (+25%), and annual root length mortality (+36%). Larger increase in mortality compared with production with CO2 enrichment is explained by shorter average fine root lifespans in elevated plots (500 days) compared with controls (574 days). The effects of CO2 -enrichment on fine root proliferation tended to shift from shallow (0,15 cm) to deeper soil depths (15,30) with increasing duration of the study. Diameters of fine roots were initially increased by CO2 -enrichment but this effect diminished over time. Averaged over 6 years, annual fine root NPP was estimated to be 163 g dw m,2 yr,1 in CO2 -enriched plots and 130 g dw m,2 yr,1 in control plots (P= 0.13) corresponding to an average annual additional input of fine root biomass to soil of 33 g m,2 yr,1 in CO2 -enriched plots. A lack of consistent CO2× year effects suggest that the positive effects of CO2 enrichment on fine root growth persisted 6 years following minirhizotron tube installation (8 years following initiation of the CO2 fumigation). Although CO2 -enrichment contributed to extra flow of C into soil in this experiment, the magnitude of the effect was small suggesting only modest potential for fine root processes to directly contribute to soil C storage in south-eastern pine forests. [source]


Environmental control of fine root dynamics in a northern hardwood forest

GLOBAL CHANGE BIOLOGY, Issue 5 2003
GERALDINE L. TIERNEY
Abstract Understanding how exogenous and endogenous factors control the distribution, production and mortality of fine roots is fundamental to assessing the implications of global change, yet our knowledge of control over fine root dynamics remains rudimentary. To improve understanding of these processes, the present study developed regression relationships between environmental variables and fine root dynamics within a northern hardwood forest in New Hampshire, USA, which was experimentally manipulated with a snow removal treatment. Fine roots (< 1 mm diameter) were observed using minirhizotrons for 2 years in sugar maple and yellow birch stands and analyzed in relation to temperature, water and nutrient availability. Fine root dynamics at this site fluctuated seasonally, with growth and mortality peaking during warmer months. Monthly fine root production was strongly associated with mean monthly air temperature and neither soil moisture nor nutrient availability added additional predictive power to this relationship. This relationship exhibited a seasonal temperature hysteresis, which was altered by snow removal treatment. These results suggest that both exogenous and endogenous cues may be important in controlling fine root growth in this system. Proportional fine root mortality was directly associated with mean monthly soil temperature, and proportional fine root mortality during the over-winter interval was strongly related to whether the soil froze. The strong relationship between fine root production and air temperature reported herein contrasts with findings from some hardwood forest sites and indicates that controls on fine root dynamics vary geographically. Future research must more clearly distinguish between endogenous and exogenous control over fine root dynamics in various ecosystems. [source]


Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil

NEW PHYTOLOGIST, Issue 3 2010
Tâmara Thaiz Santana Lima
Summary ,Fine root dynamics is widely recognized as an important biogeochemical process, but there are few data on fine root growth and its response to soil resource availability, especially for tropical forests. ,We evaluated the response of fine root dynamics to altered availability of soil water and nutrients in a 20-yr-old forest regrowth in eastern Amazonia. In one experiment the dry season reduction in soil moisture was alleviated by irrigation. In the other experiment, nutrient supply was reduced by litter removal. We used the ingrowth core technique to measure fine root mass growth, length growth, mortality and specific root length. ,Dry-season irrigation had no significant effect on mass and length of live and dead roots, whereas litter removal reduced mass and length of live roots. For both irrigation and litter removal experiments, root growth was significantly greater in the dry season than in the wet season. ,Increased root growth was associated with decreased soil water availability. However, root growth did not increase in response to nutrient reduction in litter removal plots. Overall, our results suggest that belowground allocation may differ according to the type of soil resource limitation. [source]