Home About us Contact | |||
Air-liquid Interface (air-liquid + interface)
Selected AbstractsAir-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studiesJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2007Hongxia Lin Abstract Serially passaged normal human bronchial epithelial (NHBE) cell monolayers were established on Transwell® inserts via an air-liquid interface (ALI) culture method. NHBE cells were seeded on polyester Transwell® inserts, followed by an ALI culture from day 3, which resulted in peak TEER value of 766,±,154 ,,×,cm2 on the 8th day. Morphological characteristics were observed by light microscopy and SEM, while the formation of tight junctions was visualized by actin staining, and confirmed successful formation of a tight monolayer. The transepithelial permeability (Papp) of model drugs significantly increased with the increase of lipophilicity and showed a good linear relationship, which indicated that lipophilicity is an important factor in determining the Papp value. The expression of P-gp transporter in NHBE cell monolayers was confirmed by the significantly higher basolateral to apical permeability of rhodamine123 than that of reverse direction and RT-PCR of MDR1 mRNA. However, the symmetric transport of fexofenadine,·,HCl in this NHBE cell monolayers study seems to be due to the low expression of P-gp transporter and/or to its saturation with high concentration of fexofenadine,·,HCl. Thus, the development of tight junction and the expression of P-gp in the NHBE cell monolayers in this study imply that they could be a suitable in vitro model for evaluation of systemic drug absorption via airway delivery, and that they reflect in vivo condition better than P-gp over-expressed cell line models. ©2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96:341,350, 2007 [source] Spent media from cultures of environmental isolates of Escherichia coli can suppress the deficiency of biofilm formation under anoxic conditions of laboratory E. coli strainsFEMS MICROBIOLOGY ECOLOGY, Issue 3 2006Tecilli Cabellos-Avelar Abstract The prevailing lifestyle of bacteria is sessile and they attach to surfaces in structures known as biofilms. In Escherichia coli, as in many other bacteria, biofilms are formed at the air-liquid interface, suggesting that oxygen has a critical role in the biofilm formation process. It has been reported that anaerobically growing E. coli laboratory strains are unable to form biofilms even after 96 h of incubation on Luria Bertani (LB) medium. After analyzing 22 000 transposon-induced and 26 000 chemically-induced mutants we failed to isolate an E. coli laboratory strain with the ability to form biofilm under anaerobic growth conditions. Notably, seven strains from a collection of E. coli isolated from different hosts and the environment had the ability to form biofilm in the absence of oxygen. Interestingly, spent medium from cultures of one strain, Souza298, can promote biofilm formation of E. coli laboratory strains growing under anaerobic conditions. Our results led us to propose that laboratory E. coli strains do not release (or synthesize) a molecule needed for biofilm formation under anoxic conditions but that they bear all the required machinery needed for this process. [source] Loss of intercellular adhesion activates a transition from low- to high-grade human squamous cell carcinomaINTERNATIONAL JOURNAL OF CANCER, Issue 4 2006Alexander Margulis Abstract The relationship between loss of intercellular adhesion and the biologic properties of human squamous cell carcinoma is not well understood. We investigated how abrogation of E-cadherin-mediated adhesion influenced the behavior and phenotype of squamous cell carcinoma in 3D human tissues. Cell-cell adhesion was disrupted in early-stage epithelial tumor cells (HaCaT-II-4) through expression of a dominant-negative form of E-cadherin (H-2Kd -Ecad). Three-dimensional human tissue constructs harboring either H-2Kd -Ecad-expressing or control II-4 cells (pBabe, H-2Kd -Ecad,C25) were cultured at an air-liquid interface for 8 days and transplanted to nude mice; tumor phenotype was analyzed 2 days and 2 and 4 weeks later. H-2Kd -Ecad-expressing tumors demonstrated a switch to a high-grade aggressive tumor phenotype characterized by poorly differentiated tumor cells that infiltrated throughout the stroma. This high-grade carcinoma revealed elevated cell proliferation in a random pattern, loss of keratin 1 and diffuse deposition of laminin 5 ,2 chain. When II-4 cell variants were seeded into type I collagen gels as an in vitro assay for cell migration, we found that only E-cadherin-deficient cells detached, migrated as single cells and expressed N-cadherin. Function-blocking studies demonstrated that this migration was matrix metalloproteinase-dependent, as GM-6001 and TIMP-2, but not TIMP-1, could block migration. Gene expression profiles revealed that E-cadherin-deficient II-4 cells demonstrated increased expression of proteases and cell-cell and cell-matrix proteins. These findings showed that loss of E-cadherin-mediated adhesion plays a causal role in the transition from low- to high-grade squamous cell carcinomas and that the absence of E-cadherin is an important prognostic marker in the progression of this disease. © 2005 Wiley-Liss, Inc. [source] Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studiesJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2007Hongxia Lin Abstract Serially passaged normal human bronchial epithelial (NHBE) cell monolayers were established on Transwell® inserts via an air-liquid interface (ALI) culture method. NHBE cells were seeded on polyester Transwell® inserts, followed by an ALI culture from day 3, which resulted in peak TEER value of 766,±,154 ,,×,cm2 on the 8th day. Morphological characteristics were observed by light microscopy and SEM, while the formation of tight junctions was visualized by actin staining, and confirmed successful formation of a tight monolayer. The transepithelial permeability (Papp) of model drugs significantly increased with the increase of lipophilicity and showed a good linear relationship, which indicated that lipophilicity is an important factor in determining the Papp value. The expression of P-gp transporter in NHBE cell monolayers was confirmed by the significantly higher basolateral to apical permeability of rhodamine123 than that of reverse direction and RT-PCR of MDR1 mRNA. However, the symmetric transport of fexofenadine,·,HCl in this NHBE cell monolayers study seems to be due to the low expression of P-gp transporter and/or to its saturation with high concentration of fexofenadine,·,HCl. Thus, the development of tight junction and the expression of P-gp in the NHBE cell monolayers in this study imply that they could be a suitable in vitro model for evaluation of systemic drug absorption via airway delivery, and that they reflect in vivo condition better than P-gp over-expressed cell line models. ©2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96:341,350, 2007 [source] Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cellsTHE LARYNGOSCOPE, Issue 2 2010Nam-Kyung Yeo MD Abstract Objectives/Hypothesis: Manifestations of rhinovirus (RV) infections include mucus overproduction, increased vascular permeability, and secondary bacterial infection. These effects may reflect disrupted epithelial barrier functions, which are mainly regulated by intercellular junctions, referred to as tight junctions (TJs) and adherens junctions (AJs). The objective of this study was to investigate changes in the components of TJs (ZO-1, occluding, and claudin-1) and AJs (E-cadherin) after RV infection in cultured nasal epithelial cells. Methods: Primary human nasal epithelial cells grown at an air-liquid interface were infected apically with RV. RV-induced changes in the expression of epithelial TJ and AJ proteins were determined using real-time reverse transcriptase-polymerase chain reaction, confocal microscopy, and Western blot analyses. Functional changes in the integrity of junctional proteins were assessed by measuring transepithelial resistance (TER) using a voltmeter. Results: RV infection decreased mRNA levels of ZO-1, occludin, claudin-1, and E-cadherin to 64.2%, 51.8%, 56.2%, and 56.3%, respectively, of those in controls (P < .05). Decreases in ZO-1, occludin, claudin-1, and E-cadherin protein levels in RV-infected cells were evident in immunofluorescent confocal microscopic images. Expression levels of these proteins were also lower in the RV-infected group in Western blot analyses. RV infection reduced the mean TER from 143.1 ,/cm2 (controls) to 122.6 ,/cm2. Conclusions: RV infection decreased the expression of TJ and AJ components and reduced TER in primary cultured human nasal epithelial cells, indicating that RV infection may exert a harmful effect on nasal epithelial barrier function. Laryngoscope, 2010 [source] An Antimicrobial Peptide Modulates Epithelial Responses to Bacterial ProductsTHE LARYNGOSCOPE, Issue 5 2008Marcel J. Vonk BSc Abstract Introduction: Changes in the respiratory epithelium and chronic and recurrent infections are thought to play a central role in the pathogenesis of otitis media and sinusitis. The airway epithelium is the primary defense system of the respiratory tract. Bacterial cell membrane components like lipopolysaccharide (LPS) and lipoteichoic acid (LTA) can affect the mucociliary clearance function of the respiratory epithelium. P60.4-Ac is a synthetic antimicrobial peptide based on the structure of the cathelicidin LL-37 that neutralizes the pro-inflammatory activity of LPS and LTA. Materials and Methods: Normal respiratory sinus epithelium was cultured at the air liquid interface. The cells were incubated with LPS or LTA in the presence or absence of P60.4-Ac. Results: P60.4-Ac neutralized the LPS- and LTA- induced effect on air-liquid interface cultured epithelial cells. P60.4-Ac significantly inhibited the increase in the epithelial layer caused by LPS or LTA. Conclusion: These data demonstrate that P60.4-Ac might be of clinical benefit in the management of otitis media with effusion and sinusitis. [source] Continuous Delivery of Biomaterials to the Skin,Percutaneous Device Interface Using a Fluid PumpARTIFICIAL ORGANS, Issue 2 2010Antonio Peramo Abstract We have developed an in vitro culture system composed of organotypic human skin explants interfaced with titanium rods attached to a fluid pump. This device was designed to mimic the process of natural mucosa delivery at the point where a rigid, permanent object penetrates living skin. Full thickness human breast skin explants discarded from surgeries were cultured at different time points at the air-liquid interface. The skin specimens were punctured to fit at the bottom of hollow cylindrical titanium rods. Sodium lauryl sulfate (SLS) was delivered continuously to the specimens through the rods by using an attached fluid pump. Histological analysis of the skin explants as well as no-pump controls was then performed. Our results show substantial differences between controls, where no material was pumped at the interface of rod,skin, and specimens treated with SLS, indicating that the technique of pumping the material is effective in producing observable epithelial changes. These results suggest that an adaptation of this type of device may be useful for the treatment of complications arising from the contact between tissues and percutaneous devices in vivo. [source] Tissue Engineered Artificial Skin Composed of Dermis and EpidermisARTIFICIAL ORGANS, Issue 1 2000Eun Kyung Yang Abstract: We made an artificial skin comprised of a stratified layer of keratinocytes and a dermal matrix with a type I collagen containing fibroblasts. In this work, we showed keratinocyte behavior under primary culture, gel contractions varying with concentration of collagen solution, and cell growth plots in the collagen gel. The optimum behavior of dermal equivalent could be obtained using 3.0 mg/ml collagen solution and attached gel culture. The attached gel culture had a jumping effect of growth factor on cell growth at the lag phase. To develop the artificial skin, 1× 105 cells/cm2 of keratinocytes were cultured on the dermal equivalent at air-liquid interface. Finally, to overcome the problem that artificial skin of collagen gel was torn easily during suturing of grafting, we prepared histocompatible collagen mesh and attached the mesh to the bottom of the gel. Cultured artificial skins were successfully grafted onto rats. [source] |