Home About us Contact | |||
Air Stream (air + stream)
Selected AbstractsRemote extinguishing of large fires with powder aerosolsFIRE AND MATERIALS, Issue 5 2006Article first published online: 9 JAN 200, Mikhail Krasnyansky Abstract A new method for distant extinguishing of fire spreading in an extended closed volume such as a mine working, storehouse, subway tunnel, electric cable channels, etc. is proposed. A novel extinguishing agent based on a stable mixture of superfine ammonium phosphate [NH4H2PO4] and modified fumed silica [SiO2,CH3] is supplied to the fire by a powerful ventilator. The properties of the extinguishing agent (average particle size, airborne residence time, distance of transfer by the air stream) have been studied in an experimental chamber (100 m3). A test extinguishing of a large-scale fire has been performed in an experimental tunnel 180 m in length. Extinguishing agent consumption, dynamics of temperature change over the tunnel length and composition of fire gases were recorded in this test. The influence of foam concentration, addition of nitrogen and halons to aerosol, were also studied. Copyright © 2006 John Wiley & Sons, Ltd. [source] Non-isothermal multi-phase modeling of PEM fuel cell cathodeINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 7 2010Nada Zamel Abstract In this study, numerical simulation has been carried out for the heat transfer and temperature distribution in the cathode of polymer electrolyte membrane fuel cells along with the multi-phase and multi-species transport under the steady-state condition. The commercial software, COMSOL Multiphysics, is used to solve the conservation equations for momentum, mass, species, charge and energy numerically. The conservation equations are applied to the solid, liquid and vapor phases in the bipolar plate and gas diffusion (GDL) and catalyst layers of a two-dimensional cross section of the cathode. The catalyst layer is assumed to be a finite domain and the water production in the catalyst layer is considered to be in the liquid form. The temperature distribution in the cathode is simulated and then the effects of the relative humidity of the air stream, the permeability of the cathode and the flow channel shoulder to channel width ratio are investigated. It is shown that the highest temperature change, both in the in-plane and across-the-plane directions, occurs in the GDL, while the highest temperature is reached in the catalyst layer. The distribution of temperature in the bipolar plate is shown to be relatively uniform due to the high thermal conductivity of the plate. A decrease in the inlet relative humidity of the air stream results in the decrease of the maximum temperature due to the absorption of heat during the evaporation of liquid water in the GDL and catalyst layer. The non-uniformity of the temperature distribution, especially in the catalyst layer, is observed with the increase of the permeability of the cathode. Similarly, the decrease of the channel shoulder to channel width ratio leads to a non-uniform distribution of temperature especially under the channel areas. Copyright © 2009 John Wiley & Sons, Ltd. [source] Effect of internal cooling/heating coil on adsorption/regeneration of solid desiccant tray for controlling air humidityINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2008B. N. Hung Abstract Thermal performances of solid desiccant tray having internal cooling/heating coil for air humidity adsorption and desiccant regeneration are investigated. Three units of desiccant tray each of 48,cm,×,48,cm cross-sectional area and 2.5,cm thickness filled with silica gel are tested in a wind tunnel. For adsorption process, an air stream is flowing through the desiccant trays and the air humidity is captured by the silica gel. Approximately 10,40% of air humidity could be adsorbed more in case of the internal cooling. Besides, the outlet air temperature increases only slightly. In regeneration process, a hot air stream is used to repel the moisture in the silica gel. With the internal heating, the regeneration time is shorter compared with that without internal water heating. In addition, a correlation for calculating the adsorption/regeneration performance of the silica gel trays is developed and the results from the model agree well with the experimental data. Copyright © 2008 John Wiley & Sons, Ltd. [source] Thermodynamic study of wet cooling tower performanceINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 6 2006V. D. Papaefthimiou Abstract An analytical model was developed to describe thermodynamically the water evaporation process inside a counter-flow wet cooling tower, where the air stream is in direct contact with the falling water, based on the implementation of the energy and mass balance between air and water stream describing thus, the rate of change of air temperature, humidity ratio, water temperature and evaporated water mass along tower height. The reliability of model predictions was ensured by comparisons made with pertinent experimental data, which were obtained from the literature. The paper elaborated the effect of atmospheric conditions, water mass flow rate and water inlet temperature on the variation of the thermodynamic properties of moist air inside the cooling tower and on its thermal performance characteristics. The analysis of the theoretical results revealed that the thermal performance of the cooling tower is sensitive to the degree of saturation of inlet air. Hence, the cooling capacity of the cooling tower increases with decreasing inlet air wet bulb temperature whereas the overall water temperature fall is curtailed with increasing water to air mass ratio. The change of inlet water temperature does not affect seriously the thermal behaviour of the cooling tower. Copyright © 2005 John Wiley & Sons, Ltd. [source] Chemical effect of diluents on flame structure and NO emission characteristic in methane-air counterflow diffusion flameINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 13 2002Jeong Park Abstract The dilution effect of air stream according to agent type on flame structure and NO emission behaviour is numerically simulated with detailed chemistry in CH4/air counterflow diffusion flame. The volume percentage of diluents (H2O, CO2, and N2) in air stream is systematically changed from 0 to 10. The radiative heat loss term, based on an optically thin model, is included to clearly describe the flame structure and NO emission behaviour especially at low strain rates. The effect of dilution of air stream on the decrease of maximum flame temperature varies as CO2>H2O>N2, even if heat capacity of H2O is the highest. It is also found that the addition of CO2 shows the tendency towards the reduction of flame temperature in both the thermal and chemical sides, while the addition of H2O enhances the reaction chemically and restrains it thermally due to a super-equilibrium effect of the chain carrier radicals caused by the breakdown of H2O in high-temperature region. The comparison of the nitrogen chemical reaction pathway between the cases of the addition of CO2 and H2O clearly displays that the addition of CO2 is much more effective to reduce NO emission. Copyright © 2002 John Wiley & Sons, Ltd. [source] Gasification of char particles in packed beds: analysis and resultsINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 12 2001S. Dasappa Abstract In this paper a packed bed of char particles is considered for experimental study and analysis. The packed char bed is modelled by extending the single-particle analysis (Dasappa et al., 1994a, Chem. Eng. Sci.49,2:223,232. Dasappa et al., 1994b, Twenty-fifth Symposium (International) on Combustion, pp. 1619,1628. Dasappa et al., 1998, Twenty-seventh Symposium (International) on Combustion, pp. 1335,1342.). All the reactions related to gasification are introduced into the reaction system as in Dasappa et al. (1998). The propagation of the reaction front into the packed char bed against the air stream is modelled. The results are compared with the experimental data on a model quartz reactor using charcoal. Experimental data of propagation of the reaction front through the packed bed from the present study and of Groeneveld's charcoal gasifier are used for comparison. Using the analysis of Dosanjh et al. 1987 (Combust. Flame68:131,142), it is shown that heat loss dominates the heat generation at the quench condition. It is also shown that increasing the oxygen fraction in air has resulted in flame front to propagate into the char bed. The critical air mass flux for peak propagation rate in a bed of char is found to be 0.1 kg m,2 s. Copyright © 2001 John Wiley & Sons, Ltd. [source] Continuous bioremediation of phenol-polluted air in an external loop airlift bioreactor with a packed bed,JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 6 2006Hossein Nikakhtari Abstract An external loop airlift bioreactor with a small amount (99% porosity) of stainless steel mesh packing inserted in the riser section was used for bioremediation of a phenol-polluted air stream. The packing enhanced volatile organic chemical and oxygen mass transfer rates and provided a large surface area for cell immobilization. Using a pure strain of Pseudomonas putida, fed-batch and continuous runs at three different dilution rates were completed with phenol in the polluted air as the only source of growth substrate. 100% phenol removal was achieved at phenol loading rates up to 33 120 mg h,1 m,3 using only one-third of the column, superior to any previously reported biodegradation rates of phenol-polluted air with 100% efficiency. A mathematical model has been developed and is shown to accurately predict the transient and steady-state data. Copyright © 2006 Society of Chemical Industry [source] Combustion of chlorinated hydrocarbons in catalyst-coated sintered metal fleece reactors,JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 2-3 2003K Everaert Abstract Incinerators emit chlorinated hydrocarbons, such as polychlorinated benzenes (PCBz) and phenols (PCPh), polychlorinated biphenyls (PCB) and polychlorinated dibenzodioxins and furans (PCDD/F), as very dilute streams. High temperatures (>1000,°C) are required in traditional oxidizers. From an energy-saving perspective and to avoid de novo synthesis of PCDD/F, exhaust gas clean-up must be performed at low temperatures (250,350,°C). Catalytic combustion can be applied in this temperature range and different reactor layouts are used (eg monoliths, honeycomb). The present investigation uses a novel catalyst-coated sintered metal fleece. Thin metal fibers are sintered (non-woven) to fleece of various thickness, structure and porosity. V,Ti,W catalysts are examined. The paper will briefly review the catalyst coating method suitable to provide a structured fleece reactor with adequate characteristics. Experiments were carried out in the temperature range of 260,340,°C with various hydrocarbons injected in a carrier air stream. The experimental investigations demonstrated: (i) that the conversion of the hydrocarbons (volatile organic compounds, VOC) is independent of the oxygen concentration, corresponding to a zero-order dependence of the reaction rate; (ii) that the conversion of the hydrocarbons is a first-order reaction in the VOC; (iii) that the oxidation of the VOC proceeds to a greater extent with increasing temperature, with chlorine substitution enhancing the reactivity, and (iv) that the reaction rate constant follows an Arrhenius-dependence with activation energies between 37.3 and 58.4,kJ,mol,1. An assessment of the results leads to a model expression with kinetic reaction control. This model can be used in a scale-up strategy. © 2003 Society of Chemical Industry [source] Oxidation Behavior of Silicon-Infiltrated Carbon/Carbon Composites in High-Enthalpy Convective EnvironmentJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2001Toshio Ogasawara Thermal response and oxidation behavior of commercial metal-silicon-infiltrated carbon/carbon composites (MICMATTM; Si-CC) were evaluated in a high-enthalpy convective environment using an arc jet facility (an arc wind tunnel). Composite specimens were put into a supersonic plasma air stream having a gas enthalpy of 12.7,18.8 MJ/kg for 50,600 s. Cold-wall heat fluxes measured by a Gardon-type calorimeter ranged from 1.0 to 1.8 MW/m2, and the maximum surface temperature reached 1300°,1660°C. After the arc jet testing, no surface recession was observed in the samples, and the mass loss rate of the composites was far less than that of graphite. The excellent oxidation resistance was caused by formation of a porous SiC layer at the surface of the composite. Oxidation behavior of the composites is discussed based on a simplified airflow blocking model of the porous SiC layer. The composites exhibited excellent oxidation resistance for short-term exposure in high-enthalpy airflow. [source] Simultaneous Measurement of Particle Size and Particle Velocity by the Spatial Filtering Technique,PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 6 2002Dieter Petrak Abstract The objective of this study was to compare the measuring results of a fiber-optical probe based on a modified spatial filtering technique with given size distributions of different test powders and also with particle velocity values of laser Doppler measurements. Fiber-optical spatial filtering velocimetry was modified by fiber-optical spot scanning in order to determine simultaneously the size and the velocity of particles. The fiber-optical probe system can be used as an in-line measuring device for sizing of particles in different technical applications. Spherical test particles were narrow-sized glass beads in the range 30,100,,m and irregularly shaped test particles were limestone particles in the range 10,600,,m. Particles were dispersed by a brush disperser and the measurements were carried out at a fixed position in a free particle-laden air stream. Owing to the measurement of chord lengths and to the influence of diffraction and divergent angle, the probe results show differences from the given test particle sizes. Owing to the particle-probe collisions, the mean velocity determined by the probe is smaller than the laser Doppler mean velocity. [source] Drag on a fibre in a counterflow air streamPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003Brendan Redmond Dr. This paper evaluates the drag on the surface of a fibre moving axially in a counterflow air stream. It is assumed that the fibre velocity is very much greater than the velocity of the air stream. [source] Improving diffraction by humidity control: a novel device compatible with X-ray beamlinesACTA CRYSTALLOGRAPHICA SECTION D, Issue 12 2009Juan Sanchez-Weatherby Dehydration of protein crystals is rarely used, despite being a post-crystallization method that is useful for the improvement of crystal diffraction properties, as it is difficult to reproduce and monitor. A novel device for hydration control of macromolecular crystals in a standard data-collection environment has been developed. The device delivers an air stream of precise relative humidity that can be used to alter the amount of water in macromolecular crystals. The device can be rapidly installed and is fully compatible with most standard synchrotron X-ray beamlines. Samples are mounted in cryoloops and the progress of dehydration can be monitored both optically and by the acquisition of diffraction images. Once the optimal hydration level has been obtained, cryocooling is easy to achieve by hand or by using a sample changer. The device has been thoroughly tested on several ESRF beamlines and is available to users. [source] Absorption of H2S in NaOCl caustic aqueous solutionENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 3 2001Luke Chen Pilot plant experimental data were collected to study the feasibility of H2S removal from air streams utilizing aqueous solutions. Solutions of NaOCl/NaOH were tested in a packed bed scrubber and found to be effective. An efficiency of 99.2% H2S removal was achieved at a gas flow rate of 790 lb/f2 -hr and liquid-gas ratio of 5.06. Sodium hydroxide was found to be the active ingredient in the absorption process. A minimum alkalinity of pH 11 in the scrubbing solution was required for the H2S to be efficiently absorbed in the packed bed scrubber. For gas flow rates up to 2,100 lb/f2 hr, the height of a transfer unit (HTU) varied from 1.8 ft to 2 ft with different proportions of NaOCl and NaOH in the solution. [source] Thermoeconomic optimization of the geometry of an air conditioning precooling air reheater dehumidifierINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 4 2006Rahim K. Jassim Abstract Exergy method of optimization for the geometrical parameters of an air conditioning precooling air reheater with turbulent flow is developed in this paper. The method is based on exergy, economic analysis and optimization theory. As there are humid air streams involved in the heat transfer process, then there are irreversibilities or exergy destruction, which is due to pressure losses, temperature difference and specific humidity gradient. These principle components of total irreversibility are not independent and there is a trade-off between them. Therefore, the purpose of this research paper is to study the effect of the geometry and the specific humidity of the two streams on the irreversibilities of a crossflow precooling air reheater dehumidifier. Also, the optimum balance between the three components of irreversibility is determined thereby giving the optimum solution for heat exchanger area. The total cost function is expressed on an annualized basis of the sum of the precooler capital cost and the running cost attributable to the precooler irreversibility. This total cost function is optimized in this paper according to the optimum heat transfer area and the total irreversibilities. Two optimum heat transfer areas were found for minimum total irreversibility and minimum total annual cost for a specific example. Finally, the relations between the typical operational variables such as heat transfer area, Reynolds numbers and the total annual cost for the precooler is developed and presented in graphs, which allow the calculation of the optimal heat transfer area, which gives the optimum irreversibility and minimum total annual cost. Copyright © 2005 John Wiley & Sons, Ltd. [source] Simplified models for the performance evaluation of desiccant wheel dehumidificationINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 1 2003M. Beccali Abstract In the present communication, simple models have been presented to evaluate the performance of rotary desiccant wheels based on different kind of solid desiccants e.g. silica gel and LiCl. The first part of the paper presents ,Model 54' which is developed for silica gel desiccant rotor. The model has been derived from the interpolation of experimental data obtained from the industry and the correlations have been developed for predicting outlet temperature and absolute humidity. The ,Model 54' consists of 54 coefficients corresponding to each correlation for outlet absolute humidity and temperature and it is found that the model predicts very well the performance of silica gel desiccant rotor (Type-I). In the second part of the paper, a psychrometric model has been presented to obtain relatively simple correlations for outlet temperature and absolute humidity. The developed psychometric model is based on the correlations between the relative humidity and enthalpy of supply and regeneration air streams. The model is used to predict the performance of three type of desiccant rotors manufactured by using different kind of solid desiccants (Type I, II and III). The model is tested corresponding to a wide range of measurement data. The developed psychometric model is simple in nature and able to predict very well the performance of different kind of desiccant rotors. Copyright © 2002 John Wiley & Sons, Ltd. [source] Biofiltration of nuisance sulfur gaseous odors from a meat rendering plantJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 12 2002Zarook Shareefdeen Abstract This paper presents a case study of a commercial biofilter, treating air streams contaminated with several odorous compounds including dimethyl sulfide, ammonia, methanethiol, hydrogen sulfide and ethylamine. The biofilter is packed with a proprietary wood-based (BIOMIXÔ) medium which is designed to provide a good biological environment, pH buffer capacity, low pressure drop and resistance to compaction. This commercial biofilter treats a contaminated air volume of 15,000 actual cubic feet per minute (acfm) from a meat rendering and wastewater treatment operation with a 30-s empty bed residence time. The case study includes a novel gas sampling procedure and characterization of biofilter air streams through a mobile Fourier transform infrared system and olfactometer analysis. The results confirmed the good distribution of air, moisture and bacterial population across the medium. Four years of consistent performance of this commercial biofilter with >99% removal of 24,500 odor units demonstrates that biofilters can be successfully applied for the removal of highly odorous gaseous sulfur compounds. © 2002 Society of Chemical Industry [source] A New Apparatus for Particle Impact TestsPARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 4 2003Yevgeny Petukhov Abstract Breakage and chipping of particles due to collision with a hard surface is a common occurrence in many conveying and handling systems, such as pneumatic conveying and jet-mills. Studies of the breakage mechanism of particles due to impact and the effect of impact velocity and the number of impacts have been investigated in depth both experimentally and theoretically. In this paper, a new concept and apparatus are introduced for conducting particle impact tests. In most of the published test rigs, particles were accelerated towards a target. In our apparatus, the target moves and hits the particles. Using this concept, the machine can operate in a vacuum, which will reduce errors caused by air streams and turbulence. The performance of the new apparatus is analyzed and the breakage phenomenon is discussed, to some extent, for two materials. The results are presented in terms of the increase in the weight percentage of the feed broken and the decrease in the weight median size as the impact velocity or number of impacts increases. [source] Comparison of Fixed and Fluidized Activated Carbon Beds for Removal of Organic VaporsCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 7 2004I.E. Agranovski Abstract Activated carbons are commonly used for removal of organic vapors from exhaust air streams. Two configurations, including fixed and fluidized carbon beds are usually employed in industry to meet various requirements of the industrial process which is being used. This paper investigates the performance of such configurations and provides a comparative analysis. It was found that for thin carbon layers, the fixed bed performs more efficiently with the difference exceeding 15,% for the layers with the thickness less than 15,mm. This difference is decreasing with increase of the layer thickness and becomes less than 5,% for the beds thicker than 100,mm. Considering various advantages of the fluidized beds over fixed beds, including lower resistance to the gas flow, excellent gas distribution and minimal possibility of clogging in case of existence of alien particles in the gas, they are recommended for use with the minimal thickness of the layer to be larger than 100,mm. [source] A pilot-scale demonstration of a membrane-based absorption- stripping process for removal and recovery of volatile organic compoundsENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 1 2001S. Majumdar A new membrane-based continuous absorption-stripping process has been developed to separate gas/vapor mixtures, such as volatile organic compounds (VOCs), from a nitrogen/air stream. Two different hollow fiber membrane modules are needed in this process to remove the VOCs. In the first module, VOC-laden nitrogen/air stream flows through the bore of the hollow fibers. A suitable absorbent liquid with a high solubility for the VOC and essentially no solubility for nitrogen/air is pumped countercurrently over the outside of the fibers. This liquid is an inert, nontoxic, and essentially nonvolatile, organic solvent. The VOCs are effectively removed from nitrogen/air to a very low level and are concentrated in the absorbent for recovery, while the absorbent is regenerated by heating and subjecting it to vacuum in a separate hollow fiber membrane module called the stripping module. A pilot-scale membrane-based absorption-stripping unit was located next to a paint spray booth at Robins Air Force Base, Warner Robins, GA. Tests were performed on slip-streams of real-time air emissions from scheduled intermittent painting operations, so the concentration of VOC in the exhaust air fluctuated with time. The VOC removal efficiency was determined as a function of the feed air flow rate and the absorbent (silicone oil) flow rate. Depending on the gas/liquid flow rates and the inlet VOC concentration, the process successfully removed as much as 95+% of the VOC present. The experimental results have been compared with theoretical predictions. [source] |