Fatigue Crack Initiation Life (fatigue + crack_initiation_life)

Distribution by Scientific Domains


Selected Abstracts


A Comparison of Conventional Local Approach and the Short Crack Approach to Fatigue Crack Initiation at a Notch,

ADVANCED ENGINEERING MATERIALS, Issue 9 2009
Narayanaswami Ranganathan
Methods to estimate fatigue crack initiation life at a notch tip are compared. The methods used determine the strain amplitudes at the notch tip using Neuber's or Glinka's approximation. In conventional approaches, equivalent-damage levels are determined, using appropriate strain-life relationships coupled with damage-summation models. In the short-crack approach, a crack-like defect is assumed to exist at the notch tip. It is shown that the short-crack concept can be successfully applied to predict crack-initiation behavior at a notch. Model predictions are compared with carefully designed experiments. It is shown that model predictions are very close to experimentally measured lives under an aircraft-wing loading spectrum. [source]


Fatigue crack initiation life estimation in a steel welded joint by the use of a two-scale damage model

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 5 2009
N. LAUTROU
ABSTRACT This work deals with the fatigue behaviour of S355NL steel welded joints classically used in naval structures. The approach suggested here, in order to estimate the fatigue crack initiation life, can be split into two stages. First, stabilized stress,strain cycles are obtained in all points of the welded joint by a finite element analysis, taking constant or variable amplitude loadings into account. This calculation takes account of: base metal elastic,plastic behaviour, variable yield stress based on hardness measurements in various zones of the weld, local geometry at the weld toe and residual stresses if any. Second, if a fast elastic shakedown occurs, a two-scale damage model based on Lemaitre et al.'s work is used as a post-processor in order to estimate the fatigue crack initiation life. Material parameters for this model were identified from two Wöhler curves established for base metal. As a validation, four-point bending fatigue tests were carried out on welded specimens supplied by ,DCNS company'. Two load ratios were considered: 0.1 and 0.3. Residual stress measurements by X-ray diffraction completed this analysis. Comparisons between experimental and calculated fatigue lives are promising for the considered loadings. An exploitation of this method is planned for another welding process. [source]


A shear stress-based parameter for fretting fatigue crack initiation

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 7 2001
C. D. Lykins
The purpose of this study was to investigate the fretting fatigue crack initiation behaviour of titanium alloy, Ti,6Al,4V. Fretting contact conditions were varied by using different geometries of the fretting pad. Applied forces were also varied to obtain fretting fatigue crack initiation lives in both the low- and high-cycle fatigue regimes. Fretting fatigue specimens were examined to determine the crack location and the crack angle orientation along the contact surface. Salient features of fretting fatigue experiments were modelled and analysed with finite element analysis. Computed results of the finite element analyses were used to formulate a shear stress-based parameter to predict the fretting fatigue crack initiation life, location and orientation. Comparison of the analytical and experimental results showed that fretting fatigue crack initiation was governed by the maximum shear stress, and therefore a parameter involving the maximum shear stress range on the critical plane with the correction factor for the local mean stress or stress ratio effect was found to be effective in characterizing the fretting fatigue crack initiation behaviour in titanium alloy, Ti,6Al,4V. [source]


Fatigue crack initiation in naval welded joints: experimental and numerical approaches

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2008
D. Thevenet
This work deals with the fatigue behavior of welded joints. The proposed strategy can be split into two stages: the structure shakedown study and the fatigue crack initiation study. Firstly, stabilized elastic stress,strain cycles are obtained in any point of the welded joint by a finite element analysis, taking constant or variable amplitude loadings into account. The second part of this work is the calculation of the fatigue crack initiation period. Under the assumption of a fast elastic shakedown, a recent approach, proposed by Lemaitre et al., based on damage mechanics, can be used to predict the fatigue crack initiation life in a structure subjected to variable and complex loadings. This strategy is used as a post,treatment of the shakedown finite element calculation for the studied welded specimen. As a validation, four,point bending fatigue tests under constant amplitude loading were carried out on welded specimens provided by DCNS group. Good correlations between experimental and calculated fatigue crack initiation lives have been established. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


A shear stress-based parameter for fretting fatigue crack initiation

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 7 2001
C. D. Lykins
The purpose of this study was to investigate the fretting fatigue crack initiation behaviour of titanium alloy, Ti,6Al,4V. Fretting contact conditions were varied by using different geometries of the fretting pad. Applied forces were also varied to obtain fretting fatigue crack initiation lives in both the low- and high-cycle fatigue regimes. Fretting fatigue specimens were examined to determine the crack location and the crack angle orientation along the contact surface. Salient features of fretting fatigue experiments were modelled and analysed with finite element analysis. Computed results of the finite element analyses were used to formulate a shear stress-based parameter to predict the fretting fatigue crack initiation life, location and orientation. Comparison of the analytical and experimental results showed that fretting fatigue crack initiation was governed by the maximum shear stress, and therefore a parameter involving the maximum shear stress range on the critical plane with the correction factor for the local mean stress or stress ratio effect was found to be effective in characterizing the fretting fatigue crack initiation behaviour in titanium alloy, Ti,6Al,4V. [source]


Fatigue crack initiation in naval welded joints: experimental and numerical approaches

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2008
D. Thevenet
This work deals with the fatigue behavior of welded joints. The proposed strategy can be split into two stages: the structure shakedown study and the fatigue crack initiation study. Firstly, stabilized elastic stress,strain cycles are obtained in any point of the welded joint by a finite element analysis, taking constant or variable amplitude loadings into account. The second part of this work is the calculation of the fatigue crack initiation period. Under the assumption of a fast elastic shakedown, a recent approach, proposed by Lemaitre et al., based on damage mechanics, can be used to predict the fatigue crack initiation life in a structure subjected to variable and complex loadings. This strategy is used as a post,treatment of the shakedown finite element calculation for the studied welded specimen. As a validation, four,point bending fatigue tests under constant amplitude loading were carried out on welded specimens provided by DCNS group. Good correlations between experimental and calculated fatigue crack initiation lives have been established. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]