Faunal Elements (faunal + element)

Distribution by Scientific Domains

Selected Abstracts


EVOLUTION, Issue 3 2008
Bert Van Bocxlaer
A running controversy in evolutionary thought was Eldredge and Gould's punctuated equilibrium model, which proposes long periods of morphological stasis interspersed with rapid bursts of dramatic evolutionary change. One of the earliest and most iconic pieces of research in support of punctuated equilibrium is the work of Williamson on the Plio-Pleistocene molluscs of the Turkana Basin. Williamson claimed to have found firm evidence for three episodes of rapid evolutionary change separated by long periods of stasis in a high-resolution sequence. Most of the discussions following this report centered on the topics of (eco)phenotypy versus genotypy and the possible presence of preservational and temporal artifacts. The debate proved inconclusive, leaving Williamson's reports as one of the empirical foundations of the paradigm of punctuated equilibrium. Here we conclusively show Williamson's original interpretations to be highly flawed. The supposed rapid bursts of punctuated evolutionary change represent artifacts resulting from the invasion of extrabasinal faunal elements in the Turkana palaeolakes during wet phases well known from elsewhere in Africa. [source]

Darriwilian (Middle Ordovician) graptolite faunas of the Sandia Region, southern Peru

Jörg Maletz
Abstract Ordovician graptolite faunas of Peru are restricted to a short interval in the Middle to basal Upper Ordovician, found in three regions of the country. All Peruvian graptolite faunas are strongly dominated by shallow water elements of the Atlantic Faunal Realm, represented largely by Didymograptus s. str. and Aulograptus, but a number of faunal elements of the pandemic isograptid biofacies have recently been discovered in the Sandia Region of SE Peru. Peruvian graptolite faunas are reviewed and the new records from the Sandia Region are discussed in detail. The faunas from the Purumpata and Iparo members of the San José Formation range in age approximately from the Undulograptus austrodentatus Biozone to the Holmograptus lentus Biozone (early to middle Darriwilian). The faunas provide a better understanding of faunal composition and diversity in this region and help to correlate shallow water and deeper water graptolite faunas from this time interval. Biserial graptolites are rare in most samples and usually indeterminable, but a single identifiable specimen of Undulograptus austrodentatus was found, indicating a level close to the base of the Darriwilian. A number of specimens of the genera Isograptus and Arienigraptus from the Sandia Region represent pandemic graptolite faunas of the isograptid biofacies, described for the first time from this region. Copyright © 2009 John Wiley & Sons, Ltd. [source]

Structure and diversity of the Mesozoic wood genus Xenoxylon in Far East Asia: implications for terrestrial palaeoclimates

LETHAIA, Issue 4 2009
Although the faunal elements of Far East Asian Mesozoic terrestrial biota have attracted much attention in recent years, their palaeoecology remains poorly known. In particular, features of the palaeoclimate are highly controversial. To address this point we used the Mesozoic fossil wood Xenoxylon, a genus recognized as an indicator of wet temperate biotopes and which is common in the area during the Carnian,Maastrichtian interval. We re-appraised bibliographic data and gathered new data for Xenoxylon in the Mesozoic of Far East Asia. This demonstrated that previous taxonomic approaches to the genus have been so far idiosyncratic. We examined the anatomical diversity of morphogenus Xenoxylon in Far East Asia and compared it to that of samples from Europe. This indicates that in an area centred on north-eastern China, Xenoxylon reached a level of anatomical diversity unmatched elsewhere in the world. We hypothesize that this diversity witnesses the persistence of palaeoecological conditions particularly suitable for Xenoxylon and that a wet temperate climate prevailed over most of the area throughout the Carnian,Maastrichtian interval. It is in this setting that the famous Jehol Biota probably evolved. [source]

Cambrian high-resolution biostratigraphy and carbon isotope chemostratigraphy in Scania, Sweden: first record of the SPICE and DICE excursions in Scandinavia

LETHAIA, Issue 1 2009
A core drilling (Andrarum-3), from the classical locality at Andrarum, Scania, southernmost Sweden, penetrated a 28.90-m-thick Cambrian succession. The core comprises dark grey to black, finely laminated mudstones and shales with early concretionary carbonate lenses (stinkstones or orsten) and a few primary carbonate beds. The middle Cambrian (provisional Series 3) part of the core comprises 17.35 m, whereas the Furongian Series (upper Cambrian) part covers the remaining 11.55 m. Nineteen trilobite and two phosphatocopine genera are present in the middle Cambrian, whereas the less diverse Furongian interval yielded four trilobite and three phosphatocopine genera. Other, less frequent, faunal elements include conodonts (s. l.), brachiopods, sponge spicules, bradoriids, and coprolites. Trilobites and phosphatocopines were used to subdivide the core into seven biozones ranging from the Ptychagnostus atavus Zone to the Parabolina spinulosa Zone (P. spinulosa Subzone). Carbon isotopic analyses (,13Corg) through the core show two important excursions, the negative DrumIan Carbon isotope Excursion (DICE) in the Pt. atavus Zone, and the Steptoean Positive Carbon Isotope Excursion (SPICE) beginning near the first appearance of Glyptagnostus reticulatus and extending upward into the Olenus and Agnostus (Homagnostus) obesus Zone. The DICE displays a peak value, in the samples at hand, of ,30.45,,13Corg in the lower part of the P. atavus Zone. The ,13Corg values increase through the overlying L. laevigata and A. pisiformis zones and display peak values of c. ,28.00,,13Corg in the lowermost Furongian Olenus wahlenbergi and O. attenuatus subzones. Thereafter the values decrease significantly through the O. scanicus Subzone. Both isotopic excursions have been documented from several palaeocontinents, but never before from Baltica. Moreover, for the first time these excursions are recorded from organic matter in an alum shale setting. The recorded shift of +1.50,2.00,,13Corg is approximately half the magnitude of the SPICE documented from other regions. This discrepancy may be related to temporal variations in the type, origin, or diagenesis of the organic fraction analysed. [source]