fMRI Signals (fmri + signal)

Distribution by Scientific Domains


Selected Abstracts


Primary and multisensory cortical activity is correlated with audiovisual percepts

HUMAN BRAIN MAPPING, Issue 4 2010
Margo McKenna Benoit
Abstract Incongruent auditory and visual stimuli can elicit audiovisual illusions such as the McGurk effect where visual /ka/ and auditory /pa/ fuse into another percept such as/ta/. In the present study, human brain activity was measured with adaptation functional magnetic resonance imaging to investigate which brain areas support such audiovisual illusions. Subjects viewed trains of four movies beginning with three congruent /pa/ stimuli to induce adaptation. The fourth stimulus could be (i) another congruent /pa/, (ii) a congruent /ka/, (iii) an incongruent stimulus that evokes the McGurk effect in susceptible individuals (lips /ka/ voice /pa/), or (iv) the converse combination that does not cause the McGurk effect (lips /pa/ voice/ ka/). This paradigm was predicted to show increased release from adaptation (i.e. stronger brain activation) when the fourth movie and the related percept was increasingly different from the three previous movies. A stimulus change in either the auditory or the visual stimulus from /pa/ to /ka/ (iii, iv) produced within-modality and cross-modal responses in primary auditory and visual areas. A greater release from adaptation was observed for incongruent non-McGurk (iv) compared to incongruent McGurk (iii) trials. A network including the primary auditory and visual cortices, nonprimary auditory cortex, and several multisensory areas (superior temporal sulcus, intraparietal sulcus, insula, and pre-central cortex) showed a correlation between perceiving the McGurk effect and the fMRI signal, suggesting that these areas support the audiovisual illusion. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source]


Disparity of activation onset in sensory cortex from simultaneous auditory and visual stimulation: Differences between perfusion and blood oxygenation level-dependent functional magnetic resonance imaging

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 2 2005
Ho-Ling Liu PhD
Abstract Purpose To compare the temporal behaviors of perfusion and blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in the detection of timing differences between distinct brain areas, and determine potential latency differences between stimulus onset and measurable fMRI signal in sensory cortices. Materials and Methods Inversion recovery (IR) spin-echo echo-planar imaging (EPI) and T2*-weighted gradient-echo EPI sequences were used for perfusion- and BOLD-weighted experiments, respectively. Simultaneous auditory and visual stimulations were employed in an event-related (ER) paradigm. Signal time courses were averaged across 40 repeated trials to evaluate the onset of activation and to determine potential differences of activation latency between auditory and visual cortices and between these scanning methods. Results Temporal differences between visual and auditory areas ranged from 90,200 msec (root-mean-square (RMS) = 134 msec) and from ,80 to 930 msec (RMS = 604 msec) in perfusion and BOLD measurements, respectively. The temporal variability detected with BOLD sequences was larger between subjects and was significantly greater than that in the perfusion response (P < 0.04). The measured time to half maximum (TTHM) values for perfusion imaging (visual, 3260 ± 710 msec; auditory, 3130 ± 700 msec) were earlier than those in BOLD responses (visual, 3770 ± 430 msec; auditory, 3360 ± 460 msec). Conclusion The greater temporal variability between brain areas detected with BOLD could result from differences in the venous contributions to the signal. The results suggest that perfusion methods may provide more accurate timing information of neuronal activities than BOLD-based imaging. J. Magn. Reson. Imaging 2005;21:111,117. © 2005 Wiley-Liss, Inc. [source]


Comparison of TCA and ICA techniques in fMRI data processing

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 4 2004
Xia Zhao MS
Abstract Purpose To make a quantitative comparison of temporal cluster analysis (TCA) and independent component analysis (ICA) techniques in detecting brain activation by using simulated data and in vivo event-related functional MRI (fMRI) experiments. Materials and Methods A single-slice MRI image was replicated 150 times to simulate an fMRI time series. An event-related brain activation pattern with five different levels of intensity and Gaussian noise was superimposed on these images. Maximum contrast-to-noise ratio (CNR) of the signal change ranged from 1.0 to 2.0 by 0.25 increments. In vivo visual stimulation fMRI experiments were performed on a 1.9 T magnet. Six human volunteers participated in this study. All imaging data were analyzed using both TCA and ICA methods. Results Both simulated and in vivo data have shown that no statistically significant difference exists in the activation areas detected by both ICA and TCA techniques when CNR of fMRI signal is larger than 1.75. Conclusion TCA and ICA techniques are comparable in generating functional brain maps in event-related fMRI experiments. Although ICA has richer features in exploring the spatial and temporal information of the functional images, the TCA method has advantages in its computational efficiency, repeatability, and readiness to average data from group subjects. J. Magn. Reson. Imaging 2004;19:397,402. © 2004 Wiley-Liss, Inc. [source]


Neuronal correlates of gastric pain induced by fundus distension: a 3T-fMRI study

NEUROGASTROENTEROLOGY & MOTILITY, Issue 5 2004
C.-L. Lu
Abstract Visceral hypersensitivity in gastric fundus is a possible pathogenesis for functional dyspepsia. The cortical representation of gastric fundus is still unclear. Growing evidence shows that the insula, but not the primary or secondary somatosensory region (SI or SII), may be the cortical target for visceral pain. Animal studies have also demonstrated that amygdala plays an important role in processing visceral pain. We used fMRI to study central projection of stomach pain from fundus balloon distension. We also tested the hypothesis that there will be neither S1 nor S2 activation, but amygdala activation with the fundus distension. A 3T-fMRI was performed on 10 healthy subjects during baseline, fullness (12.7 ± 0.6 mmHg) and moderate gastric pain (17.0 ± 0.8 mmHg). fMRI signal was modelled by convolving the predetermined psychophysical response. Statistical comparisons were performed between conditions on a group level. Gastric pain activated a wide range of cortical and subcortical structures, including thalamus and insula, anterior and posterior cingulate cortices, basal ganglia, caudate nuclei, amygdala, brain stem, cerebellum and prefrontal cortex (P < 0.001). A subset of these neuronal substrates was engaged in the central processing of fullness sensation. SI and SII were not activated during the fundus stimulation. In conclusion, the constellation of neuronal structures activated by fundus distension overlaps the pain matrices induced musculocutaneous pain, with the exception of the absence of SI or SII activation. This may account for the vague nature of visceral sensation/pain. Our data also confirms that the insula and amygdala may act as the central role in visceral sensation/pain, as well as in the proposed sensory-limbic model of learning and memory of pain. [source]


Correction for pulse height variability reduces physiological noise in functional MRI when studying spontaneous brain activity

HUMAN BRAIN MAPPING, Issue 2 2010
Petra J. van Houdt
Abstract EEG correlated functional MRI (EEG-fMRI) allows the delineation of the areas corresponding to spontaneous brain activity, such as epileptiform spikes or alpha rhythm. A major problem of fMRI analysis in general is that spurious correlations may occur because fMRI signals are not only correlated with the phenomena of interest, but also with physiological processes, like cardiac and respiratory functions. The aim of this study was to reduce the number of falsely detected activated areas by taking the variation in physiological functioning into account in the general linear model (GLM). We used the photoplethysmogram (PPG), since this signal is based on a linear combination of oxy- and deoxyhemoglobin in the arterial blood, which is also the basis of fMRI. We derived a regressor from the variation in pulse height (VIPH) of PPG and added this regressor to the GLM. When this regressor was used as predictor it appeared that VIPH explained a large part of the variance of fMRI signals acquired from five epilepsy patients and thirteen healthy volunteers. As a confounder VIPH reduced the number of activated voxels by 30% for the healthy volunteers, when studying the generators of the alpha rhythm. Although for the patients the number of activated voxels either decreased or increased, the identification of the epileptogenic zone was substantially enhanced in one out of five patients, whereas for the other patients the effects were smaller. In conclusion, applying VIPH as a confounder diminishes physiological noise and allows a more reliable interpretation of fMRI results. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source]


Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI

HUMAN BRAIN MAPPING, Issue 7 2007
Christian-G.
Abstract There has recently been a growing interest in the use of simultaneous electroencephalography (EEG) and functional MRI (fMRI) for evoked activity in cognitive paradigms, thereby obtaining functional datasets with both high spatial and temporal resolution. The simultaneous recording permits obtaining event-related potentials (ERPs) and MR images in the same environment, conditions of stimulation, and subject state; it also enables tracing the joint fluctuations of EEG and fMRI signals. The goal of this study was to investigate the possibility of tracking the trial-to-trial changes in event-related EEG activity, and of using this information as a parameter in fMRI analysis. We used an auditory oddball paradigm and obtained single-trial amplitude and latency features from the EEG acquired during fMRI scanning. The single-trial P300 latency presented significant correlation with parameters external to the EEG (target-to-target interval and reaction time). Moreover, we obtained significant fMRI activations for the modulation by P300 amplitude and latency, both at the single-subject and at the group level. Our results indicate that, in line with other studies, the EEG can bring a new dimension to the field of fMRI analysis by providing fine temporal information on the fluctuations in brain activity. Hum Brain Mapp, 2007. © 2007 Wiley-Liss, Inc. [source]


Source density-driven independent component analysis approach for fMRI data

HUMAN BRAIN MAPPING, Issue 3 2005
Baoming Hong
Abstract Independent component analysis (ICA) has become a popular tool for functional magnetic resonance imaging (fMRI) data analysis. Conventional ICA algorithms including Infomax and FAST-ICA algorithms employ the underlying assumption that data can be decomposed into statistically independent sources and implicitly model the probability density functions of the underlying sources as highly kurtotic or symmetric. When source data violate these assumptions (e.g., are asymmetric), however, conventional ICA methods might not work well. As a result, modeling of the underlying sources becomes an important issue for ICA applications. We propose a source density-driven ICA (SD-ICA) method. The SD-ICA algorithm involves a two-step procedure. It uses a conventional ICA algorithm to obtain initial independent source estimates for the first-step and then, using a kernel estimator technique, the source density is calculated. A refitted nonlinear function is used for each source at the second step. We show that the proposed SD-ICA algorithm provides flexible source adaptivity and improves ICA performance. On SD-ICA application to fMRI signals, the physiologic meaningful components (e.g., activated regions) of fMRI signals are governed typically by a small percentage of the whole-brain map on a task-related activation. Extra prior information (using a skewed-weighted distribution transformation) is thus additionally applied to the algorithm for the regions of interest of data (e.g., visual activated regions) to emphasize the importance of the tail part of the distribution. Our experimental results show that the source density-driven ICA method can improve performance further by incorporating some a priori information into ICA analysis of fMRI signals. Hum Brain Mapping, 2005. © 2005 Wiley-Liss, Inc. [source]


CBF, BOLD, CBV, and CMRO2 fMRI signal temporal dynamics at 500-msec resolution

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 3 2008
Qiang Shen PhD
Abstract Purpose To investigate the temporal dynamics of blood oxygenation level-dependent (BOLD), cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of oxygen (CMRO2) changes due to forepaw stimulation with 500-msec resolution in a single setting. Materials and Methods Forepaw stimulation and hypercapnic challenge on rats were studied. CBF and BOLD functional MRI (fMRI) were measured using the pseudo-continuous arterial spin-labeling technique at 500-msec resolution. CBV fMRI was measured using monocrystalline iron-oxide particles following CBF and BOLD measurements in the same animals. CMRO2 change was estimated via the biophysical BOLD model with hypercapnic calibration. Percent changes and onset times were analyzed for the entire forepaw somatosensory cortices and three operationally defined cortical segments, denoted Layers I,III, IV,V, and VI. Results BOLD change was largest in Layers I,III, whereas CBF, CBV, and CMRO2 changes were largest in Layers IV,V. Among all fMRI signals in all layers, only the BOLD signal in Layers I,III showed a poststimulus undershoot. CBF and CBV dynamics were similar. Closer inspection showed that CBV increased slightly first (P < 0.05), but was slow to peak. CBF increased second, but peaked first. BOLD significantly lagged both CBF and CBV (P < 0.05). Conclusion This study provides important temporal dynamics of multiple fMRI signals at high temporal resolution in a single setting. J. Magn. Reson. Imaging 2008. © 2008 Wiley-Liss, Inc. [source]


Elevated endogenous GABA level correlates with decreased fMRI signals in the rat brain during acute inhibition of GABA transaminase

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2005
Zhengguang Chen
Abstract Vigabatrin and gabaculine, both highly specific inhibitors of GABA (,-aminobutyric acid) transaminase, cause significant elevation of endogenous GABA levels in brain. The time course of GABA concentration after acute GABA transaminase inhibition was measured quantitatively in the ,-chloralose-anesthetized rat brain using in vivo selective homonuclear polarization transfer spectroscopy. The blood oxygenation level-dependent (BOLD) effect in functional magnetic resonance imaging (fMRI) has been considered to be coupled tightly to neuronal activation via the metabolic demand of associated glutamate transport. Correlated with the rise in endogenous GABA level after vigabatrin or gabaculine treatment, the intensity of BOLD-weighted fMRI signals in rat somatosensory cortex during forepaw stimulation was found to be reduced significantly. These results are consistent with previous findings that inhibition of GABA transaminase leads to augmented GABA release and potentiation of GABAergic inhibition. © 2004 Wiley-Liss, Inc. [source]


Declined neural efficiency in cognitively stable human immunodeficiency virus patients,

ANNALS OF NEUROLOGY, Issue 3 2009
Thomas Ernst PhD
Objective To determine whether brain activation changes in clinically and neurocognitively normal human immunodeficiency virus (HIV),infected and in HIV-seronegative control (SN) participants over a 1-year period. Methods Functional magnetic resonance imaging (fMRI) was performed in 32 SN and 31 HIV patients (all with stable combination antiretroviral treatment) at baseline and after 1 year. Each participant performed a set of visual attention tasks with increasing attentional load (from tracking two, three, or four balls). All HIV and SN participants had normal neuropsychological function at both examinations. Results Over 1 year, HIV patients showed no change in their neurocognitive status or in task performance during fMRI. However, HIV patients showed significant 1-year increases in fMRI signals in the prefrontal and posterior parietal cortices for the more difficult tasks, whereas SN control participants showed only decreases in brain activation in these regions. This resulted in significant interactions between HIV status and time of study in left insula, left parietal, left temporal, and several frontal regions (left and right middle frontal gyrus, and anterior cingulate). Interpretation Because fMRI task performance remained unchanged in both groups, the HIV patients appeared to maintain performance by increasing usage of the attention network, whereas the control participants reduced usage of the attention network after 1 year. These findings suggest improved efficiency or a practice effect in the SN participants but declined efficiency of the neural substrate in HIV patients, possibly because of ongoing brain injury associated with the HIV infection, despite their apparent stable clinical course. Ann Neurol 2009;65:316,325 [source]