Extrahepatic Organs (extrahepatic + organ)

Distribution by Scientific Domains


Selected Abstracts


Molecular cloning of CYP1A gene and its expression by benzo(a)pyrene from goldfish (Carassius auratus)

ENVIRONMENTAL TOXICOLOGY, Issue 3 2009
Seung-Min Oh
Abstract We cloned and sequenced the cytochrome P450 1A (CYP1A) gene from goldfish (Carassius auratus). It has a 1581 bp open reading frame that encodes a 526 amino acid protein with a theoretical molecular weight of 59.02 kDa. The CYP1A amino acid sequence clusters in a monophyletic group with other fish CYP1As, and more closely related to zebrafish CYP1A (91% identity) than to other fish CYP1As. Exposure to benzo(a)pyrene (BaP) by intraperitoneal injection increased biliary BaP metabolites and liver CYP1A gene expression. BaP exposure also increased CYP1A gene expression in extrahepatic organs, including intestine, and gill, which are sensitive to aqueous and dietary exposure to Arylhydrocarbon receptor (AhR) agonists. Therefore, goldfish CYP1A identified in this study offers basic information for further research related to biomarker use of CYP1A of goldfish. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009. [source]


The ubiquitin-proteasome system and its role in ethanol-induced disorders

ADDICTION BIOLOGY, Issue 1 2002
Terrence M. Donohue Jr
The levels of these proteins are controlled by their rates of degradation. Similarly, protein catabolism plays a crucial role in prolonging cellular life by destroying damaged proteins that are potentially cytotoxic. A major player in these catabolic reactions is the ubiquitin-proteasome system, a novel proteolytic system that has become the primary proteolytic pathway in eukaryotic cells. Ubiquitin-mediated proteolysis is now regarded as the major pathway by which most intracellular proteins are destroyed. Equally important, from a toxicological standpoint, is that the ubiquitin-proteasome system is also widely considered to be a cellular defense mechanism, since it is involved in the removal of damaged proteins generated by adduct formation and oxidative stress. This review describes the history and the components of the ubiquitin-proteasome system, its regulation and its role in pathological states, with the major emphasis on ethanol-induced organ injury. The available literature cited here deals mainly with the effects of ethanol consumption on the ubiquitin-proteasome pathway in the liver. However, since this proteolytic system is an essential pathway in all cells it is an attractive experimental model and therapeutic target in extrahepatic organs such as the brain and heart that are also affected by excessive alcohol consumption. [source]


Changing the pathogenetic roadmap of liver fibrosis?

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7pt1 2008
Where did it start; where will it go?
Abstract The pathophysiology of liver injury has attracted the interest of experimentalists and clinicians over many centuries. With the discovery of liver-specific pericytes , formerly called fat-storing cells, Ito-cells, lipocytes, and currently designated as hepatic stellate cells (HSC) , the insight into the cellular and molecular pathobiology of liver fibrosis has evolved and the pivotal role of HSC as a precursor cell-type for extracellular matrix,producing myofibroblasts has been established. Although activation and transdifferentiation of HSC to myofibroblasts is still regarded as the pathogenetic key mechanism of fibrogenesis, recent studies point to a prominent heterogeneity of the origin of myofibroblasts. Currently, the generation of matrix-synthesizing fibroblasts by epithelial,mesenchymal transition, by influx of bone marrow,derived fibrocytes into damaged liver tissue, and by differentiation of circulating monocytes to fibroblasts after homing in the injured liver are discussed as important complementary mechanisms to enlarge the pool of (myo-)fibroblasts in the fibrosing liver. Among the molecular mediators, transforming growth factor-beta (TGF-,) plays a central role, which is controlled by the bone-morphogenetic protein (BMP)-7, an important antagonist of TGF-, action. The newly discovered pathways supplement the linear concept of HSC activation to myofibroblasts, point to fibrosis as a systemic response involving extrahepatic organs and reactions, add further evidence to a more or less uniform concept of organ fibrosis in general (e.g. liver, lung, kidney), and offer innovative approaches for the development of non-invasive biomarkers and antifibrotic trials. [source]


Experimental hepatitis A virus infection in guinea pigs

JOURNAL OF MEDICAL VIROLOGY, Issue 4 2001
Britt Hornei
Abstract Although many of the properties of hepatitis A virus (HAV) are known, several aspects of HAV pathogenesis are still not understood, such as the mechanism underlying the hepatotropism or HAV replication in extrahepatic sites. Detailed studies of these aspects were hampered mostly by the lack of accessible animal models, since only nonhuman primates are susceptible to experimental infections. An alternative animal model would also be of interest to assess the primary replication site and for the evaluation of the safety and efficacy of vaccines. A study was undertaken to determine whether HAV can infect guinea pigs and whether they are useful as a model for studying aspects of HAV pathogenesis and for the evaluation of vaccines. HAV variants adapted to primate or guinea pig tissue culture were used to inoculate guinea pigs intraperitoneally and by the oral route. The animals were observed for clinical disease, shedding of HAV in stools, viremia, seroconversion, evidence for liver damage by biochemical liver function tests, virus presence in the liver, development of hepatic histopathological changes, and occurrence of HAV in extrahepatic organs. The animals developed an active, clinically inapparent infection with specific histopathological changes in the liver. Although virus replication occurred, as shown by RT-PCR and isolation of infectious virus from feces and serum, it seems unlikely that guinea pigs are suitable for studying the clinical features of hepatitis A, because the clinical and laboratory parameters remained normal. However, guinea pigs appear useful for studying some aspects of HAV pathogenesis and for testing the safety of vaccines. J. Med. Virol. 64:402,409, 2001. © 2001 Wiley-Liss, Inc. [source]


Diagnosis and phenotypic classification of Wilson disease,

LIVER INTERNATIONAL, Issue 3 2003
Peter Ferenci
Wilson disease is an inherited autosomal recessive disorder of hepatic copper metabolism leading to copper accumulation in hepatocytes and in extrahepatic organs such as the brain and the cornea. Originally Wilson disease was described as a neurodegerative disorder associated with cirrhosis of the liver. Later, Wilson disease was observed in children and adolescents presenting with acute or chronic liver disease without any neurologic symptoms. While diagnosis of neurologic Wilson disease is straightforward, it may be quite difficult in non-neurologic cases. Up to now, no single diagnostic test can exclude or confirm Wilson disease with 100% certainty. In 1993, the gene responsible for Wilson disease was cloned and localized on chromosome 13q14.3 (MIM277900) (1, 2). The Wilson disease gene ATP7B encodes a P-type ATPase. More than 200 disease causing mutations of this gene have been described so far (3). Most of these mutations occur in single families, only a few are more frequent (like H1069Q, 3400delC and 2299insC in Caucasian (4,6) or R778L in Japanese (7), Chinese and Korean patients). Studies of phenotype-genotype relations are hampered by the lack of standard diagnostic criteria and phenotypic classifications. To overcome this problem, a working party discussed these problems in depth at the 8th International Meeting on Wilson disease and Menkes disease in Leipzig/Germany (April 16,18, 2001),. After the meeting, a preliminary draft of a consensus report was mailed to all active participants and their comments were incorporated in the final text. [source]