Home About us Contact | |||
Extraction Fraction (extraction + fraction)
Selected AbstractsA Single, Moderate Ethanol Exposure Alters Extracellular Dopamine Levels and Dopamine D2 Receptor Function in the Nucleus Accumbens of Wistar RatsALCOHOLISM, Issue 10 2009Kelle M. Franklin Background:, The nucleus accumbens (NAc) has been implicated in the neurochemical effects of ethanol (EtOH). Evidence suggests that repeated EtOH exposures and chronic EtOH drinking increase dopamine (DA) neurotransmission in the NAc due, in part, to a reduction in D2 autoreceptor function. The objectives of the current study were to evaluate the effects of a single EtOH pretreatment and repeated EtOH pretreatments on DA neurotransmission and D2 autoreceptor function in the NAc of Wistar rats. Methods:, Experiment 1 examined D2 receptor function after a single intraperitoneal (i.p.) injection or repeated i.p. injections of 0.0, 0.5, 1.0, or 2.0 g/kg EtOH to female Wistar rats. Single EtOH pretreatment groups received 1 daily i.p. injection of 0.9% NaCl (saline) for 4 days, followed by 1 day of saline or EtOH administration; repeated EtOH pretreatment groups received 5 days of saline or EtOH injections. Reverse microdialysis experiments were conducted to determine the effects of local perfusion with the D2 -like receptor antagonist (-)sulpiride (SUL; 100 uM), on extracellular DA levels in the NAc. Experiment 2 evaluated if pretreatment with a single, moderate (1.0 g/kg) dose of EtOH would alter levels and clearance of extracellular DA in the NAc, as measured by no-net-flux (NNF) microdialysis. Subjects were divided into the EtOH-naïve and the single EtOH pretreated groups from Experiment 1. Results:, Experiment 1: Changes in extracellular DA levels induced with SUL perfusion were altered by the EtOH dose (p < 0.001), but not the number of EtOH pretreatments (p > 0.05). Post-hoc analyses indicated that groups pretreated with single or repeated 1.0 g/kg EtOH showed significantly attenuated DA response to SUL, compared with all other groups (p < 0.001). Experiment 2: Multiple linear regression analyses yielded significantly (p < 0.05) higher extracellular DA concentrations in the NAc of rats receiving EtOH pretreatment, compared with their EtOH-naïve counterparts (3.96 ± 0.42 nM and 3.25 ± 0.23 nM, respectively). Extraction fractions were not significantly different between the 2 groups. Conclusions:, The present results indicate that a single EtOH pretreatment at a moderate dose can increase DA neurotransmission in the NAc due, in part, to reduced D2 autoreceptor function. [source] MR determination of glomerular filtration rate in subjects with solitary kidneys in comparison to clinical standards of renal function: feasibility and preliminary report,CONTRAST MEDIA & MOLECULAR IMAGING, Issue 2 2009Richard W. Katzberg Abstract This study was conducted to demonstrate the feasibility of quantifying single kidney glomerular filtration rate (skGFR) by magnetic resonance (MR) by comparison to the clinical estimates of GFR in volunteer subjects with a single kidney. Seven IRB-approved subjects with a solitary kidney, stable serum creatinine (SCr) and a 24,h creatinine clearance (CrCl) volunteered to undergo an MR examination that determined renal extraction fraction (EF) with a breathhold inversion recovery echo planar pulse sequence and renal blood flow with a velocity encoded phase imaging sequence. The product of EF and blood flow determines GFR. These values were compared with the 24,h CrCl, estimated GFR by the modification of diet in renal disease (MDRD) regression analysis and the Cockroft,Gault (CG) determination of CrCl. The mean and standard deviation of differences between the MR GFR, MDRD and CG vs the 24,h CrCl were 12.3,±,35.7, ,8.9,±,18.5 and 1.2,±,19.6, respectively. The Student t -test showed that none of the mean differences were statistically significant between techniques. This clinical investigation shows that MR can be used for skGFR determination in human subjects with comparable values to those derived from clinically used serum-based GFR estimation techniques. Copyright © 2009 John Wiley & Sons, Ltd. [source] Cerebral bloodflow and oxygen metabolism in borderzone and territorial infarcts due to symptomatic carotid artery occlusionEUROPEAN JOURNAL OF NEUROLOGY, Issue 4 2004J. De Reuck It remains controversial whether borderzone infarcts are due to compromised cerebral perfusion and whether territorial infarcts are caused by artery-to-artery emboli in case of occlusion of the internal carotid artery. The present positron emission tomography study compares with normal controls, the average regional cerebral bloodflow (rCBF), regional oxygen extraction fraction (rOEF) and regional cerebral metabolic rate for oxygen (rCMRO2) in the infarct area, the peri-infarct zone, the remaining homolateral hemisphere and in the contralateral hemisphere of 10 patients with borderzone and 17 patients with territorial infarcts, due to internal carotid artery occlusion by atherosclerosis and by cervical dissection. The steady-state technique with oxygen-15 was used. A nearly significant increase of rOEF with lowered rCBF and rCMRO2 was observed in the peri-infarct zone of patients with territorial infarcts. In patients with borderzone infarcts rCMRO2 was decreased in the peri-infarct zone, in the remaining homolateral hemisphere and in the contralateral hemisphere without changes in rCBF and rOEF. The present study finds no arguments that impaired cerebral perfusion is a more frequent cause of borderzone than of territorial infarcts. [source] Paradoxical effects of prodynorphin gene deletion on basal and cocaine-evoked dopaminergic neurotransmission in the nucleus accumbensEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006V. I. Chefer Abstract Quantitative and conventional microdialysis were used to investigate the effects of constitutive deletion of the prodynorphin gene on basal dopamine (DA) dynamics in the nucleus accumbens (NAc) and the responsiveness of DA neurons to an acute cocaine challenge. Saline- and cocaine-evoked locomotor activity were also assessed. Quantitative microdialysis revealed that basal extracellular DA levels were decreased, while the DA extraction fraction, an indirect measure of DA uptake, was unchanged in dynorphin (DYN) knockout (KO) mice. The ability of cocaine to increase NAc DA levels was reduced in KO. Similarly, cocaine-evoked locomotor activity was decreased in KO. The selective kappa opioid receptor agonist U-69593 decreased NAc dialysate DA levels in wildtype mice and this effect was enhanced in KO. Administration of the selective kappa opioid receptor (KOPr) antagonist nor-binaltorphimine to KO mice attenuated the decrease in cocaine-induced DA levels. However, it was ineffective in altering the decreased locomotor response to cocaine. These studies demonstrate that constitutive deletion of prodynorphin is associated with a reduction of extracellular NAc DA levels and a decreased responsiveness to acute cocaine. Data regarding the effects of U-69593 and nor-binaltorphimine in KO suggest that the kappa opioid receptor is up-regulated as a consequence of prodynorphin gene deletion and that this adaptation underlies the decrease in basal DA dynamics and cocaine-evoked DA levels observed in DYN KO mice. These findings suggest that the phenotype of DYN KO mice is not solely due to loss of endogenous opioid peptide but also reflects developmental compensations that occur at the level of the opioid receptor. [source] Effects of chronic paroxetine treatment on dialysate serotonin in 5-HT1B receptor knockout miceJOURNAL OF NEUROCHEMISTRY, Issue 1 2003A. M. Gardier Abstract The role of serotonin (5-HT)1B receptors in the mechanism of action of selective serotonin re-uptake inhibitors (SSRI) was studied by using intracerebral in vivo microdialysis in conscious, freely moving wild-type and 5-HT1B receptor knockout (KO 5-HT1B) mice in order to compare the effects of chronic administration of paroxetine via osmotic minipumps (1 mg per kg per day for 14 days) on extracellular 5-HT levels ([5-HT]ext) in the medial prefrontal cortex and ventral hippocampus. Basal [5-HT]ext values in the medial prefrontal cortex and ventral hippocampus, ,,20 h after removing the minipump, were not altered by chronic paroxetine treatment in both genotypes. On day 15, in the ventral hippocampus, an acute paroxetine challenge (1 mg/kg i.p.) induced a larger increase in [5-HT]ext in saline-pretreated mutant than in wild-type mice. This difference between the two genotypes in the effect of the paroxetine challenge persisted following chronic paroxetine treatment. Conversely, in the medial prefrontal cortex, the paroxetine challenge increased [5-HT]ext similarly in saline-pretreated mice of both genotypes. Such a challenge produced a further increase in cortical [5-HT]ext compared with that in saline-pretreated groups of both genotypes, but no differences were found between genotypes following chronic treatment. To avoid the interaction with raphe 5-HT1A autoreceptors, 1 µm paroxetine was perfused locally through the dialysis probe implanted in the ventral hippocampus; similar increases in hippocampal [5-HT]ext were found in acutely or chronically treated wild-type mice. Systemic administration of the mixed 5-HT1B/1D receptor antagonist GR 127935 (4 mg/kg) in chronically treated wild-type mice potentiated the effect of a paroxetine challenge dose on [5-HT]ext in the ventral hippocampus, whereas systemic administration of the selective 5-HT1A receptor antagonist WAY 100635 did not. By using the zero net flux method of quantitative microdialysis in the medial prefrontal cortex and ventral hippocampus of wild-type and KO 5-HT1B mice, we found that basal [5-HT]ext and the extraction fraction of 5-HT were similar in the medial prefrontal cortex and ventral hippocampus of both genotypes, suggesting that no compensatory response to the constitutive deletion of the 5-HT1B receptor involving changes in 5-HT uptake capacity occurred in vivo. As steady-state brain concentrations of paroxetine at day 14 were similar in both genotypes, it is unlikely that differences in the effects of a paroxetine challenge on hippocampal [5-HT]ext are due to alterations of the drug's pharmacokinetic properties in mutants. These data suggest that there are differences between the ventral hippocampus and medial prefrontal cortex in activation of terminal 5-HT1B autoreceptors and their role in regulating dialysate 5-HT levels. These presynaptic receptors retain their capacity to limit 5-HT release mainly in the ventral hippocampus following chronic paroxetine treatment in mice. [source] In Vivo Time-Course Changes in Ethanol Levels Sampled With Subcutaneous MicrodialysisALCOHOLISM, Issue 3 2008Eric A. Engleman Background:, The objective of this study was to determine time-course changes in in vivo ethanol (EtOH) concentrations using a novel subcutaneous (s.c.) microdialysis sampling technique. The hypothesis to be tested was that EtOH concentrations in the s.c. fluid would reflect blood EtOH concentrations. If this is the case, then s.c. microdialysis could allow a more detailed analysis of changes in in vivo levels of EtOH under different drinking paradigms. Methods:, Adult male and female Wistar rats and male alcohol-preferring (P) rats were used in this study. A loop-style microdialysis probe was designed for s.c. applications. After initial in vitro characterization, probes were implanted under the skin between the shoulder blades. Animals were allowed to recover 4 to 24 hours prior to microdialysis collection (2.0 ,l/min flow rate with isotonic saline). In vivo microdialysis experiments were then conducted to determine (i) the extraction fraction (or clearance) using EtOH no-net-flux (NNF) coupled with the alcohol clamp method, (ii) the dose,response and time-course effects after systemic EtOH administration and to compare with blood EtOH levels, and (iii) the time-course changes in EtOH levels during and after an EtOH drinking episode. Results:, In vivo probe recovery (extraction fraction) obtained using the alcohol clamp method was 69 ± 3%, and was comparable to the in vitro recovery of 73 ± 2%. For the EtOH dose,response experiment, rats injected i.p. with 0.5, 1.0, or 2.0 g/kg EtOH showed a clear dose,response effect in the s.c. dialysate samples. Peak concentrations (70, 123, and 203 mg%, respectively) were reached by 15 minutes after injection. In an experiment comparing levels of EtOH in s.c. dialysis and arterial blood samples in rats administered 1.0 g/kg EtOH, similar time-course changes in in vivo EtOH concentrations were observed with both i.g. and i.p. EtOH administration. In P rats drinking 15% EtOH during a 1-hour scheduled access period, EtOH levels in s.c. microdialysates rose rapidly over the session and peaked at approximately 50 mg% at 60 to 80 minutes. Conclusions:, Overall, these experiments indicate that s.c. EtOH and blood EtOH concentrations follow a similar time course. Moreover, s.c. microdialysis can be useful as an experimental approach for determining detailed time-course changes in in vivo EtOH concentrations associated with alcohol drinking episodes. [source] During hypoxic exercise some vasoconstriction is needed to match O2 delivery with O2 demand at the microcirculatory levelTHE JOURNAL OF PHYSIOLOGY, Issue 1 2008Carsten Lundby To test the hypothesis that the increased sympathetic tonus elicited by chronic hypoxia is needed to match O2 delivery with O2 demand at the microvascular level eight male subjects were investigated at 4559 m altitude during maximal exercise with and without infusion of ATP (80 ,g (kg body mass),1 min,1) into the right femoral artery. Compared to sea level peak leg vascular conductance was reduced by 39% at altitude. However, the infusion of ATP at altitude did not alter femoral vein blood flow (7.6 ± 1.0 versus 7.9 ± 1.0 l min,1) and femoral arterial oxygen delivery (1.2 ± 0.2 versus 1.3 ± 0.2 l min,1; control and ATP, respectively). Despite the fact that with ATP mean arterial blood pressure decreased (106.9 ± 14.2 versus 83.3 ± 16.0 mmHg, P < 0.05), peak cardiac output remained unchanged. Arterial oxygen extraction fraction was reduced from 85.9 ± 5.3 to 72.0 ± 10.2% (P < 0.05), and the corresponding venous O2 content was increased from 25.5 ± 10.0 to 46.3 ± 18.5 ml l,1 (control and ATP, respectively, P < 0.05). With ATP, leg arterial,venous O2 difference was decreased (P < 0.05) from 139.3 ± 9.0 to 116.9 ± 8.4,1 and leg was 20% lower compared to the control trial (1.1 ± 0.2 versus 0.9 ± 0.1 l min,1) (P= 0.069). In summary, at altitude, some degree of vasoconstriction is needed to match O2 delivery with O2 demand. Peak cardiac output at altitude is not limited by excessive mean arterial pressure. Exercising leg is not limited by restricted vasodilatation in the altitude-acclimatized human. [source] Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patientsANNALS OF NEUROLOGY, Issue 2 2003Jin-Moo Lee MD The purpose of this study was to explore the feasibility of obtaining magnetic resonance,measured cerebral metabolic rate of oxygen utilization (MR-CMRO2) in acute ischemic stroke patients. Seven stroke patients were serially imaged: 4.5 ± 0.9 hours (tp1), 3 to 5 days (tp2), and 1 to 3 months (tp3) after symptom onset. Diffusion-weighted, perfusion-weighted, and multiecho gradient-echo/spin-echo images were acquired; cerebral blood flow and oxygen extraction fraction maps were obtained from which CMRO2 was calculated as the product of cerebral blood flow and oxygen extraction fraction. The final infarct lesions obtained from tp3 T2-weighted images and the "penumbra" obtained from the tp1 perfusion-weighted image,defined lesion were coregistered onto tp1 CMRO2 maps. CMRO2 values in the region of brain that eventually infarcted were reduced to 0.40 ± 0.24 of the respective region on the contralateral hemisphere. The "salvaged penumbra" defined by the area of mismatch between the final infarct and the tp1 perfusion-weighted lesion demonstrated an average CMRO2 value of 0.55 ± 0.11 of the contralateral hemisphere. Although our results are preliminary and require further evaluation, the ability to obtain in vivo measurements of MR-CMRO2 noninvasively potentially can provide information for determining brain tissue viability in acute ischemic stroke patients. [source] Arterial concentration of 99mTc-sestamibi at rest, during peak exercise and after dipyridamole infusionCLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 6 2004Niels Peter Rønnow Sand Summary Tracers for myocardial perfusion imaging during stress should not only have high cardiac uptake but they should also have a fast blood clearance to prevent myocardial tracer uptake after the ischaemic stimulus. The present study characterize the early phase of the arterial 99mTc-sestamibi (MIBI) time-activity curve after venous bolus injection at rest, during peak exercise and after dipyridamole infusion. We included 11 patients undergoing angioplasty for one-vessel disease (rest study) and 20 patients evaluated for the detection of haemodynamic significant coronary stenoses by 99mTc-sestamibi single photon emission computed tomography (SPECT) using either bicycle exercise testing (10 patients) or standard dipyridamole testing (10 patients). Arterial blood samples of 1 ml were taken from the left femoral artery (rest study) or the right radial artery (exercise and dipyridamole studies) every 5 s during the first 5 min postinjection. In the exercise and the dipyridamole studies blood sampling were extended to include blood samples every 5 min 5,30 min postinjection. Peak MIBI concentration was lower and decrease in concentration slower after tracer injection during exercise than during dipyridamole stress testing. This may cause an underestimation of perfusion defects during exercise because of MIBI uptake after the ischaemic stimulus. The implications of the study not only refer to the choice of stress modality when using MIBI. This study also underlines the importance of considering early blood clearance in addition to regional myocardial tracerkinetic aspects such as myocardial extraction fraction when new tracers are introduced. [source] |