Extracellular Mg2+ (extracellular + mg2+)

Distribution by Scientific Domains


Selected Abstracts


Evidence for two conductive pathways in P2X7 receptor: differences in modulation and selectivity

JOURNAL OF NEUROCHEMISTRY, Issue 3 2010
Susanna Alloisio
J. Neurochem. (2010) 113, 796,806. Abstract The P2X7 receptor (P2X7R) is an ATP-gated cation channel whose biophysical properties remain to be unravelled unequivocally. Its activity is modulated by divalent cations and organic messengers such as arachidonic acid (AA). In this study, we analysed the differential modulation of magnesium (Mg2+) and AA on P2X7R by measuring whole-cell currents and intracellular Ca2+ ([Ca2+]i) and Na+ ([Na+]i) dynamics in HEK293 cells stably expressing full-length P2X7R and in cells endowed with the P2X7R variant lacking the entire C-terminus tail (trP2X7R), which is thought to control the pore activation. AA induced a robust potentiation of the P2X7R- and trP2X7R-mediated [Ca2+]i rise but did not affect the ionic currents in both conditions. Extracellular Mg2+ reduced the P2X7R- and trP2X7R-mediated [Ca2+]i rise in a dose-dependent manner through a competitive mechanism. The modulation of the magnitude of the P2X7R-mediated ionic current and [Na+]i rise were strongly dependent on Mg2+ concentration but occurred in a non-competitive manner. In contrast, in cells expressing the trP2X7R, the small ionic currents and [Na+]i signals were totally insensitive to Mg2+. Collectively, these results support the tenet of a functional structure of P2X7R possessing at least two distinct conductive pathways one for Ca2+ and another for monovalent ions, with the latter which depends on the presence of the receptor C-terminus. [source]


Glutamate-induced calcium increase mediates magnesium release from mitochondria in rat hippocampal neurons

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2010
Yutaka Shindo
Abstract Excess administration of glutamate is known to induce Ca2+ overload in neurons, which is the first step in excitotoxicity. Although some reports have suggested a role for Mg2+ in the excitotoxicity, little is known about its actual contribution. To investigate the role of Mg2+ in the excitotoxicity, we simultaneously measured intracellular Ca2+ and Mg2+, using fluorescent dyes, Fura red, a fluorescent Ca2+ probe, and KMG-104, a highly selective fluorescent Mg2+ probe developed by our group, respectively. Administration of 100 ,M glutamate supplemented with 10 ,M glycine to rat hippocampal neurons induced an increase in intracellular Mg2+ concentration ([Mg2+]i). Extracellular Mg2+ was not required for this glutamate-induced increase in [Mg2+]i, and no increase in intracellular Ca2+ concentration ([Ca2+]i) or [Mg2+]i was observed in neurons in nominally Ca2+ -free medium. Application of 5 ,M carbonyl cyanide p -(trifluoromethoxy) phenylhydrazone (FCCP), an uncoupler of mitochondrial inner membrane potential, also elicited increases in [Ca2+]i and [Mg2+]i. Subsequent administration of glutamate and glycine following FCCP treatment did not induce a further increase in [Mg2+]i but did induce an additive increase in [Ca2+]i. Moreover, the glutamate-induced increase in [Mg2+]i was observed only in mitochondria localized areas. These results support the idea that glutamate is able to induced Mg2+ efflux from mitochondria to the cytosol. Furthermore, pretreatment with Ru360, an inhibitor of the mitochondrial Ca2+ uniporter, prevented this [Mg2+]i increase. These results indicate that glutamate-induced increases in [Mg2+]i result from the Mg2+ release from mitochondria and that Ca2+ accumulation in the mitochondria is required for this Mg2+ release. © 2010 Wiley-Liss, Inc. [source]


Small-conductance Cl, channels contribute to volume regulation and phagocytosis in microglia

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2007
Guillaume Ducharme
Abstract The shape and volume of microglia (brain immune cells) change when they activate during brain inflammation and become migratory and phagocytic. Swollen rat microglia express a large Cl, current (IClswell), whose biophysical properties and functional roles are poorly understood and whose molecular identity is unknown. We constructed a fingerprint of useful biophysical properties for comparison with IClswell in other cell types and with cloned Cl, channels. The microglial IClswell was rapidly activated by cell swelling but not by voltage, and showed no time-dependence during voltage-clamp steps. Like IClswell in many cell types, the halide selectivity sequence was I, > Br, > Cl, > F,. However, it differed in lacking inactivation, even at +100 mV with high extracellular Mg2+, and in having a much lower single-channel conductance: 1,3 pS. Based on these fundamental differences, the microglia channel is apparently a different gene product than the more common intermediate-conductance IClswell. Microglia express several candidate genes, with relative mRNA expression levels of: CLIC1 > ClC3 > ICln , ClC2 > Best2 > Best1 , Best3 > Best4. Using a pharmacological toolbox, we show that all drugs that reduced the microglia current (NPPB, IAA-94, flufenamic acid and DIOA) increased the resting cell volume in isotonic solution and inhibited the regulatory volume decrease that followed cell swelling in hypotonic solution. Both channel blockers tested (NPPB and flufenamic acid) dose-dependently inhibited microglia phagocytosis of E. coli bacteria. Because IClswell is involved in microglia functions that involve shape and volume changes, it is potentially important for controlling their ability to migrate to damage sites and phagocytose dead cells and debris. [source]


Inhibition of neural activity depletes orexin from rat hypothalamic slice culture

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2010
Shotaro Michinaga
Abstract Orexins (hypocretins) are neuropeptides produced by a small population of hypothalamic neurons whose dysregulation may lead to narcolepsy, a neurological disorder characterized by disorganization of sleep and wakefulness. Excessive stimulation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors causes preferential loss of orexin neurons in the hypothalamus, whereas an adequate level of neuronal excitatory activities is generally known to be important for the maintenance of central neurons. By examining the effect of manipulation of neural activity, we found that 24,72 hr application of tetrodotoxin (TTX) caused a substantial decrease in the number of orexin-immunoreactive neurons, but not of melanin-concentrating hormone-immunoreactive neurons, in hypothalamic slice culture. Similar results were obtained when neural activity was arrested by added extracellular Mg2+. Reduction of orexin expression by TTX and Mg2+ was also observed at mRNA level. The decrease of orexin-immunoreactive neurons was attributable to depletion of orexin, because it was reversible after washout of TTX or elevated extracellular Mg2+ and was not associated with induction of cell death. Blockers of voltage-dependent Ca2+ channels as well as of NMDA receptors also induced a significant and selective decrease of orexin-immunoreactive neurons. Moreover, TTX-induced decrease of orexin immunoreactivity was largely abrogated by concurrent application of a moderate concentration of NMDA. These results suggest that Ca2+ entry associated with nontoxic levels of spontaneous activity of glutamatergic inputs plays an important role in the maintenance of orexin neurons in a tissue culture model. © 2009 Wiley-Liss, Inc. [source]