Extracellular Matrix Proteins (extracellular + matrix_protein)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Modulation of gene expression by extracellular pH variations in human fibroblasts: A transcriptomic and proteomic study

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 5 2003
Maja A. Bumke
Abstract Homeostasis of the intracellular ionic concentration, in particular that of hydrogen ions, is pivotal to the maintenance of cell function and viability. Nonetheless, pH fluctuations in both the intracellular and the extracellular compartments can occurr during development, in physiological processes and in disease. The influence of pH variations on gene expression has been studied in different model systems, but only for a limited number of genes. We have performed a broad range analysis of the patterns of gene expression in normal human dermal fibroblasts at two different pH values (in the presence and in the absence of serum), with the aim of getting a deeper insight into the regulation of the transcriptional program as a response to a pH change. Using the Affymetrix gene chip system, we found that the expression of 2068 genes (out of 12,565) was modulated by more than two-fold at 24, 48 or 72 h after the shift of the culture medium pH to a more acidic value, stanniocalcin 1 being a remarkable example of a strongly up-regulated gene. Genes displaying a modulated pattern of expression included, among others, cell cycle regulators (consistent with the observation that acidic pH abolishes the growth of fibroblasts in culture) and relevant extracellular matrix (ECM) components. Extracellular matrix protein 2, a protein with a restricted pattern of expression in adult human tissues, was found to be remarkably overexpressed as a consequence of serum starvation. Since ECM components, whose expression is controlled by pH, have been used as targets for biomolecular intervention, we have complemented the Affymetrix analysis with a two-dimensional polyacrylamide gel electrophoresis analysis of proteins which are differentially secreted by fibroblasts at acidic or basic pH. Mass spectrometric analysis of more than 650 protein spots allowed the identification of 170 protein isoforms or fragments, belonging to 40 different proteins. Some proteins were only expressed at basic pH (including, for instance, tetranectin), while others (e.g., agrin) were only detectable at acidic pH. Some of the identified proteins may represent promising candidate targets for biomedical applications, e.g., for antibody-mediated vascular targeting strategies. [source]


Osteopontin is produced by mast cells and affects IgE-mediated degranulation and migration of mast cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2008
Akiko Nagasaka
Abstract Osteopontin (OPN), originally discovered in bone as an extracellular matrix protein, was identified in many cell types in the immune system, presumably being involved in many aspects of pathogenesis of inflammatory and immune diseases. Mast cells are also involved in such pathological aspects by secreting multiple mediators. However, it has not been determined whether mast cells produce OPN and whether it affects their function. To test this, we used murine fetal skin-derived cultured mast cells (FSMC) and bone marrow-derived cultured mast cells. We found that OPN was spontaneously produced by FSMC and inducible by ionomycin and Fc,RI aggregation in bone marrow-derived cultured mast cells. In the presence of mast cell growth factors, FSMC were similarly generated from both OPN-deficient (OPN,/,) and -sufficient (OPN+/+) mice without significant differences in yield, purity, granularity, and viability. Using OPN,/, FSMC, we found that recombinant OPN augmented IgE-mediated degranulation and induced FSMC chemotaxis. Both effects were mediated by OPN receptors (i.e. CD44 and integrin,,v). IgE-mediated passive cutaneous anaphylaxis was significantly reduced in OPN,/, mice compared with OPN+/+ mice, indicating physiological relevance of OPN. These results indicate that OPN is a mast cell mediator, enhances mast cell responses to antigen, and thus may influence mast cell-related pathological conditions. See accompanying commentary at http://dx.doi.org/10.1002/eji200738131 [source]


Impaired nerve regeneration in reeler mice after peripheral nerve injury

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008
Erika Lorenzetto
Abstract Reelin, an extracellular matrix protein, plays an important role in the regulation of neuronal migration and cortical lamination in the developing brain. Little is known, however, about the role of this protein in axonal regeneration. We have previously shown that Reelin is secreted by Schwann cells in the peripheral nerve compartment during postnatal development and that it is up-regulated following nerve injury in adult mice. In this work, we generated mice deficient in Reelin (reeler) that express yellow fluorescent protein (YFP) in a subset of neurons and examined the axonal regeneration following nerve crush. We found that axonal regeneration was significantly altered compared with wild-type mice. By contrast, retrograde tracing with Fluorogold dye after sciatic nerve crush was unaffected in these mutants, being comparable with normal axonal transport observed in wild-type. These results indicate that the absence of Reelin impairs axonal regeneration following injury and support a role for this protein in the process of peripheral nerve regeneration. [source]


Laminin-5 stimulates hepatocellular carcinoma growth through a different function of ,6,4 and ,3,1 integrins,

HEPATOLOGY, Issue 6 2007
Carlo Bergamini
Hepatocellular carcinoma (HCC) growth severely affects prognosis. Ki-67, a known marker of cell proliferation, is a negative prognostic factor in HCC. Growth factors such as the epidermal growth factor (EGF) induce HCC cell proliferation but do not explain the great heterogeneity of HCC growth. Laminin-5 (Ln-5) is an extracellular matrix protein (ECM) present in the tissue microenvironment of HCC. The two main receptors for Ln-5, integrins ,3,1 and ,6,4, are expressed on the cell surface of HCC cells. The aim of this study is to investigate an alternative mechanism of HCC growth whereby Ln-5 promotes HCC cell proliferation through ,3,1 and ,6,4. HCC tissues containing Ln-5 display a larger diameter and higher number of positive cells for Ki-67, a well known proliferative index, as determined by double immunofluorescence staining and real-time PCR on microdissected tissues. In vitro, Ln-5, but not collagen I, collagen IV or fibronectin, induces proliferation as much as EGF does, via Erk phosphorylation as a consequence of ,4 integrin phosphorylation. However, the two HCC cell lines do not proliferate in presence of Ln-5 despite ,4 integrin and Erk1/2 activation. After transfection with ,3 integrin, in the presence of Ln-5 one of these HCC cell lines acquires a proliferative activity whereas one of the proliferative HCC cell lines, knocked-down for ,3 integrin, loses its proliferative activity. Conclusions: Our study suggests a new mechanism of HCC growth whereby Ln-5 stimulates proliferation via a different function of ,6,4 and ,3,1. (HEPATOLOGY 2007.) [source]


Retinoids directly activate the collagen X promoter in prehypertrophic chondrocytes through a distal retinoic acid response element

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2006
Arthur J. Cohen
Abstract Retinoids are essential for the terminal differentiation of chondrocytes during endochondral bone formation. This maturation process is characterized by increased cell size, expression of a unique extracellular matrix protein, collagen X, and eventually by mineralization of the matrix. Retinoids stimulate chondrocyte maturation in cultured cells and experimental animals, as well as in clinical studies of synthetic retinoids; furthermore, retinoid antagonists prevent chondrocyte maturation in vivo. However, the mechanisms by which retinoids regulate this process are poorly understood. We and others showed previously that retinoic acid (RA) stimulates expression of genes encoding bone morphogenetic proteins (BMPs), suggesting that retinoid effects on chondrocyte maturation may be indirect. However, we now show that RA also directly stimulates transcription of the collagen X gene promoter. We have identified three RA response element (RARE) half-sites in the promoter, located 2,600 nucleotides upstream from the transcription start site. These three half-sites function as two overlapping RAREs that share the middle half-site. Ablation of the middle half-site destroys both elements, abolishing RA receptor (RAR) binding and drastically decreasing RA stimulation of transcription. Ablation of each of the other two half-sites destroys only one RARE, resulting in an intermediate level of RAR binding and transcriptional stimulation. These results, together with our previously published data, indicate that retinoids stimulate collagen X transcription both directly, through activation of RARs, and indirectly, through increased BMP production. J. Cell. Biochem. © 2006 Wiley-Liss, Inc. [source]


Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: Role of p42/44 mitogen-activated protein kinase and reactive oxygen species,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2001
Zhonglin Xie
Using spontaneously hypertensive and aortic banded rats, we have shown that expression of myocardial osteopontin, an extracellular matrix protein, coincides with the development of heart failure and is inhibited by captopril, suggesting a role for angiotensin II (ANG II). This study tested whether ANG II induces osteopontin expression in adult rat ventricular myocytes and cardiac microvascular endothelial cells (CMEC), and if so, whether induction is mediated via activation of mitogen-activated protein kinases (p42/44 MAPK) and involves reactive oxygen species (ROS). ANG II (1 ,M, 16 h) increased osteopontin expression (fold increase 3.3±0.34, n,=,12, P,<,0.01) in CMEC as measured by northern analysis, but not in ARVM. ANG II stimulated osteopontin expression in CMEC in a time- (within 4 h) and concentration-dependent manner, which was prevented by the AT1 receptor antagonist, losartan. ANG II elicited robust phosphorylation of p42/44 MAPK as measured using phospho-specific antibodies, and increased superoxide production as measured by cytochrome c reduction and lucigenin chemiluminescence assays. These effects were blocked by diphenylene iodonium (DPI), an inhibitor of the flavoprotein component of NAD(P)H oxidase. PD98059, an inhibitor of p42/44 MAPK pathway, and DPI each inhibited ANG II-stimulated osteopontin expression. Northern blot analysis showed basal expression of p22phox, a critical component of NADH/NADPH oxidase system, which was increased 40,60% by exposure to ANG II. These results suggest that p42/44 MAPK is a critical component of the ROS-sensitive signaling pathways activated by ANG II in CMEC and plays a key role in the regulation of osteopontin gene expression. Published 2001 Wiley-Liss, Inc. [source]


Tenascin expression in actinic keratosis

JOURNAL OF CUTANEOUS PATHOLOGY, Issue 11 2006
Maria Lentini
Background:, Tenascin is an extracellular matrix protein frequently expressed around neoplastic and non-neoplastic lesions of the skin. Actinic keratoses (AKs) are intraepidermal neoplastic lesions of the sun-exposed skin. They are classified according to the extension of dysplasia in four stages; they also present different histological varieties. Methods:, We performed an immunohistochemical study using tenascin monoclonal antibody diluted 1 : 50 on 150 cases of AKs classified, respectively, in histotypes (38 hypertrophic, 18 atrophic, 21 bowenoid, 19 acantolytic, and 40 mixed) and in stages (27 stage I, 46 stage II, 42 stage III, and 35 stage IV; 14 in tumoral progression). Results:, Tenascin positivity was observed in all cases at the dermal level close to the epithelial lesion. The intensity of reaction increased from stage I to stage IV and, of course, also in tumoral progression. Its expression was not related to the histotypes. In very few cases, the atypical keratinocytes were positive. Conclusions:, Tenascin expression in AKs is related to the stages of dysplasia. In fact, the immunostaining intensity corresponds to the degree of the dysplasia rather than the thickness of the involved epidermis. Tenascin plays a role in neoplastic progression working as an anti-adhesive factor. [source]


Mechanical strain increases cytokine and chemokine production in bronchial fibroblasts from asthmatic patients

ALLERGY, Issue 1 2009
F. Le Bellego
Background:, Mechanical strain and cytokine stimulation are two important mechanisms leading to airway remodeling in asthma. The effect of mechanical strain on cytokine secretion in airway fibroblasts is not known. The aim of this study was to determine whether bronchial and nasal fibroblasts differentially alter cytokine secretion in response to mechanical strain. Methods:, We measured secretion of the pro-fibrotic cytokine, interleukin-6 (IL-6), and the pro-inflammatory cytokines, IL-8 and monocyte chemotactic protein 1, before and after mechanical strain in bronchial fibroblasts obtained from asthmatic patients [asthmatic bronchial fibroblasts (BAF)] and normal volunteers [normal bronchial fibroblasts (BNF)], and in nasal fibroblasts (NF) obtained from nasal polyps. Cells were grown on flexible membranes and a mechanical strain of 30% amplitude, 1 Hz frequency was applied for 3, 6 and 24 h. Control cells were unstrained. IL-6, IL-8 and monocyte chemotactic protein 1 was measured after 24 h strain using enzyme-linked immunoassay; mRNA was measured by real time polymerase chain reaction. We also measured mRNA for versican, a matrix proteoglycan, known to be upregulated in the asthmatic airway wall. Results:, In unstrained conditions, no differences in cytokine secretion were observed. After 24 h strain, BAF secreted more IL-6 than BNF. Mechanical strain increased IL-8 mRNA in BAF, BNF and NF; and IL-6 and versican mRNA, in BAF, only. Conclusions:, Cytokine responses to mechanical strain varied in different airway fibroblast populations, and depended on the site of origin, and the underlying inflammatory state. Strain resulted in IL-6 upregulation and increased message for extracellular matrix protein in bronchial fibroblasts from asthmatic patients only, and may reflect these patients' propensity for airway remodeling. [source]


Expression of osteopontin in chronic rhinosinusitis with and without nasal polyps

ALLERGY, Issue 1 2009
X. Lu
Background:, Osteopontin (OPN) is a multifunctional 34-kDa extracellular matrix protein that can influence the inflammatory process. However, the presence of OPN in human sinonasal mucosa and its roles in the inflammatory process of chronic rhinosinusitis (CRS) are not clear. This study investigated the expression of OPN in human sinonasal mucosa, its cytokine-driven expression regulation, and its effect on cytokine production in sinonasal mucosa. Methods:, Surgical samples were investigated by means of quantitative reverse transcriptase polymerase chain reaction for evaluation of OPN messenger RNA (mRNA) expression, and the presence and location of OPN protein expression were analyzed using immunohistochemistry. Furthermore, nasal explant culture was used to investigate the mutual regulatory interactions between interferon (IFN)-,, interleukin (IL)-4, IL-5, IL-13, IL-1,, and tumor necrosis factor (TNF)-, and OPN in sinonasal mucosa. Results:, Osteopontin expression was significantly upregulated in CRS tissues compared with control tissues. There was a further significant increase of OPN expression in patients with nasal polyps (NPs) and asthma. Immunohistochemistry revealed positive staining of OPN in epithelial cells, submucosal glands, infiltrating cells, and extracellular matrix. Osteopontin mRNA was induced by IFN-,, IL-1,, and TNF-,, but inhibited by IL-4 and IL-13. On the contrary, OPN induced IFN-,, IL-4, IL-5, IL-13, IL-1,, and TNF-, production in sinonasal mucosa. Conclusions:, The expression of OPN is upregulated in CRS. The mutual regulatory interactions between OPN and inflammatory cytokines suggest that OPN may play an important role in the pathogenesis of CRS. [source]


"Free-Floating" Desmosomes in Lipoid Proteinosis: An Inherent Defect in Keratinocyte Adhesion?

PEDIATRIC DERMATOLOGY, Issue 1 2006
Jon A. Dyer M.D.
However, the characteristic manifestation in children , erosive, crusted lesions that lead to scarring , is rarely discussed and poorly understood. Lipoid proteinosis results from mutations in extracellular matrix protein 1, but the function of this protein is largely unknown. We performed ultrastructural studies on lesional epidermis, cultured monolayer keratinocytes, and raft keratinocyte cultures from blistering lesions of a child with lipoid proteinosis. All sections showed the dissociation of relatively intact desmosomes from keratinocytes, with desmosomes that were "free-floating" in the intercellular spaces or attached by thin strands to the cell membrane. These changes were present in serial sections of both tissue and cultured keratinocytes, suggesting this observation to be an inherent feature of keratinocytes devoid of extracellular matrix protein 1, rather than an artifact. Although additional patients should be studied, the diminished appearance of the inner dense plaque , the region of attachment of keratin intermediate filaments to desmosomal proteins , provides preliminary evidence that extracellular matrix protein 1 may participate in attaching keratin intermediate filaments to desmosomal region protein(s). [source]


Laminin acts via focal adhesion kinase/phosphatidylinositol-3, kinase/protein kinase B to down-regulate ,1 -adrenergic receptor signalling in cat atrial myocytes

THE JOURNAL OF PHYSIOLOGY, Issue 3 2009
Y. G. Wang
We previously reported that short-term (2 h) plating of cat atrial myocytes on the extracellular matrix protein, laminin (LMN) decreases adenylate cyclase activity and ,1 -adrenergic receptor (,1 -AR) stimulation of L-type Ca2+ current (ICa,L). The present study sought to determine whether LMN-mediated down-regulation of ,1 signalling is due to down-regulation of adenylate cyclase and to gain insight into the signalling mechanisms responsible. ,1 -AR stimulation was achieved by 0.01 ,m isoproterenol (isoprenaline) plus 0.1 ,m ICI 118551, a selective ,2 -AR antagonist. Atrial myocytes were plated for at least 2 h on uncoated cover-slips (,LMN) or cover-slips coated with LMN (+LMN). As previously reported, ,1 -AR stimulation of ICa,L was significantly smaller in +LMN compared to ,LMN atrial myocytes. In ,LMN myocytes, 10 ,m LY294002 (LY), a specific inhibitor of PI-(3)K, had no effect on ,1 -AR stimulation of ICa,L. In +LMN myocytes, however, LY significantly increased ,1 -AR stimulation of ICa,L. Western blots revealed that compared with ,LMN myocytes, +LMN myocytes showed a significant increase in Akt phosphorylation at Ser-473, which was prevented by LY. In another approach, +LMN myocytes were infected (multiplicity of infection (MOI), 100; 24 h) with replication-defective adenoviruses (Adv) expressing dominant-negative inhibitors of focal adhesion kinase (FAK) (Adv-FRNK or Adv-Y397F-FAK) or Akt (Adv-dnAkt). Compared with control cells infected with Adv-,-galactosidase, cells infected with Adv-FRNK, Adv-Y397F-FAK or Adv-dnAkt each exhibited a significantly greater ,1 -AR stimulation of ICa,L. In ,LMN myocytes LY had no effect on forskolin (FSK)-stimulated ICa,L. However, in +LMN myocytes LY significantly increased FSK-stimulated ICa,L. Similar results were obtained in +LMN atrial myocytes infected with Adv-FRNK. We conclude that LMN binding to ,1 -integrin receptors acts via FAK/PI-(3)K/Akt to inhibit adenylate cyclase activity and thereby down-regulates ,1 -AR-mediated stimulation of ICa,L. These findings provide new insight into the cellular mechanisms by which the extracellular matrix can modulate atrial ,-AR signalling. [source]


Fibronectin-binding proteins secreted by Mycobacterium avium

APMIS, Issue 9 2000
HIDEKI Kitaura
Mycobacterium avium is an intracellular pathogen and a major opportunistic infectious agent observed in patients with acquired immune deficiency syndrome (AIDS). Fibronectin is an extracellular matrix protein and is a virulence factor for several extracellular pathogenic bacteria binding to mucosal surfaces. We investigated the fibronectin (FN)-binding proteins in the culture filtrate of M. avium by two-dimensional electrophoresis (2DE). Proteins in Sauton medium of M. avium after 3 weeks were separated by 2DE. The proteins were blotted onto polyvinylidene difluoride membrane and incubated with FN. FN-binding proteins were detected by Western blotting using anti-FN antibody. FN bound to five spots (33 kDa, 32 kDa, 31 kDa, 30 kDa and 25 kDa). N-terminal amino acids of these were determined. The 33 kDa spot corresponded to antigen 85 (Ag 85) C. The 32 and 31 kDa spots were either Ag 85 A or Ag 85 B. The 30 kDa spot corresponded to Ag 85 B of M. avium. The 25 kDa spot corresponded to MPA51 (M. avium MPB51). Thus, FN bound exclusively to the Ag 85 complex and MPA51. [source]


Microstructural and tensile properties of elastin-based polypeptides crosslinked with Genipin and pyrroloquinoline quinone

BIOPOLYMERS, Issue 3 2007
S. Vieth
Abstract Elastin is an elastomeric, self-assembling extracellular matrix protein with potential for use in biomaterials applications. Here, we compare the microstructural and tensile properties of the elastin-based recombinant polypeptide (EP) EP20-244 crosslinked with either genipin (GP) or pyrroloquinoline quinone (PQQ). Recombinant EP-based sheets were produced via coacervation and subsequent crosslinking. The micron-scale topography of the GP-crosslinked sheets examined with atomic force microscopy revealed the presence of extensive mottling compared with that of the PQQ-crosslinked sheets, which were comparatively smoother. Confocal microscopy showed that the subsurface porosity in the GP-crosslinked sheets was much more open. GP-crosslinked EP-based sheets exhibited significantly greater tensile strength (P , 0.05). Mechanistically, GP appears to yield a higher crosslink density than PQQ, likely due to its capacity to form short-range and long-range crosslinks. In conclusion, GP is able to strongly modulate the microstructural and mechanical properties of elastin-based polypeptide biomaterials forming membranes with mechanical properties similar to native insoluble elastin. © 2006 Wiley Periodicals, Inc. Biopolymers 85: 199,206, 2007. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties

BIOPOLYMERS, Issue 4 2003
Catherine M. Bellingham
Abstract Processes involving self-assembly of monomeric units into organized polymeric arrays are currently the subject of much attention, particularly in the areas of nanotechnology and biomaterials. One biological example of a protein polymer with potential for self-organization is elastin. Elastin is the extracellular matrix protein that imparts the properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Tropoelastin, the ,70 kDa soluble monomeric form of elastin, is highly nonpolar in character, consisting essentially of 34 alternating hydrophobic and crosslinking domains. Crosslinking domains contain the lysine residues destined to form the covalent intermolecular crosslinks that stabilize the polymer. We and others have suggested that the hydrophobic domains are sites of interactions that contribute to juxtaposition of lysine residues in preparation for crosslink formation. Here, using recombinant polypeptides based on sequences in human elastin, we demonstrate that as few as three hydrophobic domains flanking two crosslinking domains are sufficient to support a self-assembly process that aligns lysines for zero-length crosslinking, resulting in formation of the crosslinks of native elastin. This process allows fabrication of a polymeric matrix with solubility and mechanical properties similar to those of native elastin. © 2003 Wiley Periodicals, Inc. Biopolymers 70: 445,455, 2003 [source]


Emilin genes are duplicated and dynamically expressed during zebrafish embryonic development

DEVELOPMENTAL DYNAMICS, Issue 1 2008
Martina Milanetto
Abstract Emilins are a family of extracellular matrix proteins with common structural organization and containing a characteristic N-terminal cysteine-rich domain. The prototype of this family, Emilin-1, is found in human and murine organs in association with elastic fibers, and other emilins were recently isolated in mammals. To gain insight into these proteins in lower vertebrates, we investigated the expression of emilins in the fish Danio rerio. Using sequence similarity tools, we identified eight members of this family in zebrafish. Each emilin gene has two paralogs in zebrafish, showing conserved structure with the human ortholog. In situ hybridization revealed that expression of zebrafish emilin genes is regulated in a spatiotemporal manner during embryonic development, with overlapping and site-specific patterns mostly including mesenchymal structures. Expression of certain emilin genes in peculiar areas, such as the central nervous system or the posterior notochord, suggests that they may play a role in key morphogenetic processes. Developmental Dynamics 237:222,232, 2008. © 2007 Wiley-Liss, Inc. [source]


Advanced glycation endproducts: what is their relevance to diabetic complications?

DIABETES OBESITY & METABOLISM, Issue 3 2007
N. Ahmed
Glycation is a major cause of spontaneous damage to proteins in physiological systems. This is exacerbated in diabetes as a consequence of the increase in glucose and other saccharides derivatives in plasma and at the sites of vascular complications. Protein damage by the formation of early glycation adducts is limited to lysine side chain and N-terminal amino groups whereas later stage adducts, advanced glycation endproducts (AGEs), modify these and also arginine and cysteine residues. Metabolic dysfunction in vascular cells leads to the increased formation of methylglyoxal which adds disproportionately to the glycation damage in hyperglycaemia. AGE-modified proteins undergo cellular proteolysis leading to the formation and urinary excretion of glycation free adducts. AGEs may potentiate the development of diabetic complications by activation of cell responses by AGE-modified proteins interacting with specific cell surface receptors, activation of cell responses by AGE free adducts, impairment of protein,protein and enzyme,substrate interactions by AGE residue formation, and increasing resistance to proteolysis of extracellular matrix proteins. The formation of AGEs is suppressed by intensive glycaemic control, and may in future be suppressed by thiamine and pyridoxamine supplementation, and several other pharmacological agents. Increasing expression of enzymes of the enzymatic defence against glycation provides a novel and potentially effective future therapeutic strategy to suppress protein glycation. [source]


Immunoexpression of extracellular matrix proteins in human salivary gland development

EUROPEAN JOURNAL OF ORAL SCIENCES, Issue 6 2004
Cristiane Furuse
Immunoexpression of the extracellular matrix (ECM) proteins laminin, fibronectin, tenascin and types I, III and IV collagen was analyzed in the major and minor salivary glands of seven human fetuses at different gestational ages. The results showed the presence and localization of laminin, collagen IV and fibronectin around glandular structures at all stages of development. Tenascin was only detectable around excretory ducts. In the earliest stages of development, type I and type III collagen were presented as fine fibers delineating the glandular structures and delimiting the extension of the future lobule. As glandular development proceeded, the lobule was gradually filled with collagens and glandular tissue. [source]


Cellulose-binding modules from extracellular matrix proteins of Dictyostelium discoideum stalk and sheath

FEBS JOURNAL, Issue 15 2001
Yingzi Wang
Cellulose-binding modules (CBMs) of two extracellular matrix proteins, St15 and ShD, from the slime mold Dictyostelium discoideum were expressed in Escherichia coli. The expressed proteins were purified to >,98% purity by extracting inclusion bodies at pH 11.5 and refolding proteins at pH 7.5. The two refolded CBMs bound tightly to amorphous phosphoric acid swollen cellulose (PASC), but had a low affinity toward xylan. Neither protein exhibited cellulase activity. St15, the stalk-specific protein, had fourfold higher binding affinity toward microcrystalline cellulose (Avicel) than the sheath-specific ShD CBM. St15 is unusual in that it consists of a solitary CBM homologous to family IIa CBMs. Sequence analysis of ShD reveals three putative domains containing: (a) a C-terminal CBM homologous to family IIb CBMs; (b) a Pro/Thr-rich linker domain; and (c) a N-terminal Cys-rich domain. The biological functions and potential role of St15 and ShD in building extracellular matrices during D. discoideum development are discussed. [source]


ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus

FEMS MICROBIOLOGY LETTERS, Issue 2 2007
James P. O'Gara
Abstract Recent progress in elucidating the role of the icaADBC -encoded polysaccharide intercellular adhesin (PIA) or polymeric N -acetyl-glucosamine (PNAG) in staphylococcal biofilm development has in turn contributed significantly to our understanding of the pathogenesis of device-related infections. Nevertheless, our understanding of how the ica locus and PIA/PNAG biosynthesis are regulated is far from complete and many questions remain. Moreover, beyond ica, evidence is now emerging for the existence of ica -independent biofilm mechanisms in both Staphylococcus aureus and Staphylococcus epidermidis. Teichoic acids, which are a major carbohydrate component of the S. epidermidis biofilm matrix and the major cell wall autolysin, play an important role in the primary attachment phase of biofilm development, whereas the cell surface biofilm-associated protein and accumulation-associated protein are capable of mediating intercellular accumulation. These findings raise the exciting prospect that other surface proteins, which typically function as antigenic determinants or in binding to extracellular matrix proteins, may also act as biofilm adhesins. Given the impressive array of surface proteins expressed by S. aureus and S. epidermidis, future research into their potential role in biofilm development either independent of PIA/PNAG or in cooperation with PIA/PNAG will be of particular interest. [source]


Immunolocalization of bone extracellular matrix proteins (type I collagen, osteonectin and bone sialoprotein) in human dental pulp and cultured pulp cells

INTERNATIONAL ENDODONTIC JOURNAL, Issue 6 2003
J. M. Q. Garcia
Abstract Aim, To simultaneously analyse the expression of type I collagen, osteonectin and bone sialoprotein (BSP) in human dental pulp of different ages. Methodology, Cultured dental pulp fibroblasts (FP1 cell line), pulps from dental germs with incomplete root formation (n = 4) and pulps of erupted teeth with total root formation (n = 4) were used. Bone proteins were searched by immunohistochemistry and immunofluorescence using polyclonal antibodies and compared among the three groups assessed. Results, Immunohistochemistry detected the three proteins in dental pulp tissue, as it labelled extracellular matrix, predentine and odontoblasts. The BSP label was weaker, when compared to both type I collagen and osteonectin. The presence of type I collagen was more evident in pulps from erupted teeth, when compared to germ dental pulps. On the other hand, a strong expression of osteonectin in germ dental pulps was observed. Conclusions, Regardless of the degree of maturation, dental pulps present type I collagen, osteonectin and BSP in the extracellular matrix (ECM) and in the odontoblastic layer. Thus, the results suggest that these proteins are related to the production and mineralization of dentine. [source]


Inhibition of immunosuppressive effects of melanoma-inhibiting activity (MIA) by antisense techniques

INTERNATIONAL JOURNAL OF CANCER, Issue 1 2005
Piotr Jachimczak
Abstract Melanoma inhibitory activity (MIA) is an 11 kD protein secreted by malignant melanomas. Recent studies revealed an interaction of MIA with epitopes of extracellular matrix proteins including fibronectin. Structural homology of MIA with the binding sites of ,4,1 integrin results in complex interactions of MIA with molecules binding to ,4,1 integrin. As cells of the immune system express ,4,1 integrins (VLA-4), we investigated whether MIA may modulate the function of human leukocytes. Here we describe the effects of MIA on the activation of human PBMCs and auto-/allogeneic lymphokine-activated killer cell (LAK) cytotoxicity in human MIA-negative glioma cell lines and MIA-positive melanoma cell lines in vitro. MIA inhibits PHA- or IL-2-induced human PBMC proliferation in a dose-dependent manner up to 63% (3H-Tdr incorporation) and 59% (cell count), respectively, when added to the cell culture prior to mitogen stimulation. In addition, both autologous (GL and HW) and allogeneic (HTZ-17, HTZ-243 and HTZ-374) antitumor LAK cytotoxicity was reduced by the addition of exogenous rhMIA (500 ng/ml, f.c.). Consequently, endogenous inhibition of MIA expression in human melanoma cells by MIA-specific phosphorothioate antisense oligonucleotides enhanced the autologous LAK-cell activity to the same level as observed in MIA-negative human HMB melanoma cells expressing an MIA-antisense construct. Our results indicate that MIA may contribute to immunosuppression frequently seen in malignant melanomas by inhibiting cellular antitumor immune reactions. Antagonization of MIA activity using antisense techniques may represent a novel therapeutic strategy for treatment of malignant melanomas. [source]


Let's stick together: The role of the Fras1 and Frem proteins in epidermal adhesion

IUBMB LIFE, Issue 7 2007
Kieran Short
Abstract The Fras1 and Frem extracellular matrix proteins play critical roles in epithelial-mesenchymal interaction during embryonic development. Loss of function in humans results in a recessive embryonic blistering disorder called Fraser syndrome. Inactivation of these proteins, or the proteins with which they interact (e.g., Grip1) has also been shown to underlie members of the 'bleb' family of classic mouse mutants which provide a valuable model of Fraser syndrome. Recent studies supporting direct interactions between the Fras1 and Frem proteins, combined with more rigorous elucidation of their developmental regulation, have shed new light on their activity. We summarize the findings to date, bringing new insight into their role in the regulation of epidermal-basement membrane adhesion and organogenesis during development. iubmb Life, 59: 427-435, 2007 [source]


Valproic acid blocks adhesion of renal cell carcinoma cells to endothelium and extracellular matrix

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009
Jon Jones
Abstract Treatment strategies for metastatic renal cell carcinoma (RCC) have been limited due to chemotherapy and radiotherapy resistance. The development of targeted drugs has now opened novel therapeutic options. In the present study, anti-tumoral properties of the histone deacetylase inhibitor valproic acid (VPA) were tested in vitro and in vivo on pre-clinical RCC models. RCC cell lines Caki-1, KTC-26 or A498 were treated with various concentrations of VPA to evaluate tumour cell adhesion to vascular endothelial cells or to immobilized extracellular matrix proteins. In vivo tumour growth was conducted in subcutaneous xenograft mouse models. VPA was also combined with low dosed interferon-, (IFN-,) and the efficacy of the combination therapy, as opposed to VPA monotherapy, was compared. VPA significantly and dose-dependently prevented tumour cell attachment to endothelium or matrix proteins, accompanied by elevated histones H3 and H4 acetylation. VPA altered integrin-, and -, subtype expression, in particular ,3, ,5 and ,3, and blocked integrin-dependent signalling. In vivo, VPA significantly inhibited the growth of Caki-1 in subcutaneous xenografts with the 200 mg/kg being superior to the 400 mg/kg dosing schedule. VPA-IFN-, combination markedly enhanced the effects of VPA on RCC adhesion, and in vivo tumour growth was further reduced by the 400 mg/kg but not by the 200 mg/kg VPA dosing schedule. VPA profoundly blocked the interaction of RCC cells with endothelium and extracellular matrix and reduced tumour growth in vivo. Therefore, VPA should be considered an attractive candidate for clinical trials. [source]


Vascular smooth muscle cell growth-promoting factor/F-spondin inhibits angiogenesis via the blockade of integrin ,v,3 on vascular endothelial cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2001
Yoshito Terai
Vascular smooth muscle cell growth-promoting factor (VSGP) was originally isolated from bovine ovarian follicular fluid as a stimulator of vascular smooth muscle cell proliferation. Homology searches indicate that bovine and human VSGPs are orthologs of rat F-spondin. Here, we examined whether recombinant human VSGP/F-spondin affected the biological activities of endothelial cells. VSGP/F-spondin did not affect the proliferation of human umbilical vein endothelial cells (HUVECs); however, it did inhibit VEGF- or bFGF-stimulated HUVEC migration. To clarify the mechanism of this inhibitory effect, we examined the adhesion of HUVECs to extracellular matrix proteins. VSGP/F-spondin specifically inhibited the spreading of HUVECs on vitronectin via the functional blockade of integrin ,v,3. As a result, VSGP/F-spondin inhibited the tyrosine phosphorylation of focal adhesion kinase (FAK) when HUVECs were plated on vitronectin. Moreover, VSGP/F-spondin inhibited the activation of Akt when HUVECs on vitronectin were stimulated with VEGF. VSGP/F-spondin inhibited tube formation by HUVECs in vitro and neovascularization in the rat cornea in vivo. These results indicate that VSGP/F-spondin inhibits angiogenesis at least in part by the blockade of endothelial integrin ,v,3. © 2001 Wiley-Liss, Inc. [source]


Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative

JOURNAL OF CLINICAL PERIODONTOLOGY, Issue 2 2001
Staale P. Lyngstadaas
Abstract Objective: Enamel extracellular matrix proteins in the form of the enamel matrix derivative EMDOGAIN® (EMD) have been successfully employed to mimic natural cementogenesis to restore fully functional periodontal ligament, cementum and alveolar bone in patients with severe periodontitis. When applied to denuded root surfaces EMD forms a matrix that locally facilitates regenerative responses in the adjacent periodontal tissues. The cellular mechanism(s), e.g. autocrine growth factors, extracellular matrix synthesis and cell growth, underlying PDL regeneration with EMD is however poorly investigated. Material and Methods: Human periodontal ligament (PDL) cells were cultured on EMD and monitored for cellular attachment rate, proliferation, DNA replication and metabolism. Furthermore, intracellular cyclic-AMP levels and autocrine production of selected growth factors were monitored by immunological assays. Controls included PDL and epithelial cells in parallel cultures. Results: PDL cell attachment rate, growth and metabolism were all significantly increased when EMD was present in cultures. Also, cells exposed to EMD showed increased intracellular cAMP signalling and autocrine production of TGF-,1, IL-6 and PDGF AB when compared to controls. Epithelial cells increased cAMP and PDGF AB secretion when EMD was present, but proliferation and growth were inhibited. Conclusion: Cultured PDL cells exposed to EMD increase attachment rate, growth rate and metabolism, and subsequently release several growth factors into the medium. The cellular interaction with EMD generates an intracellular cAMP signal, after which cells secrete TGF-,1, IL-6 and PDGF AB. Epithelial cell growth however, is inhibited by the same signal. This suggest that EMD favours mesenchymal cell growth over epithelium, and that autocrine growth factors released by PDL cells exposed to EMD contribute to periodontal healing and regeneration in a process mimicking natural root development. [source]


Heat shock protein 27 is involved in neurite extension and branching of dorsal root ganglion neurons in vitro

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2006
Kristy L. Williams
Abstract Alteration of the cytoskeleton in response to growth factors and extracellular matrix proteins is necessary for neurite growth. The cytoskeletal components, such as actin and tubulin, can be modified through interaction with other cellular proteins, including the small heat shock protein Hsp27. Our previous work suggested that Hsp27 influences neurite growth, potentially via its phosphorylation state interactions with actin. To investigate further the role of Hsp27 in neurite outgrowth of adult dorsal root ganglion (DRG) neurons, we have both down-regulated endogenous Hsp27 and expressed exogenous Hsp27. Down-regulation of Hsp27 with Hsp27 siRNA resulted in a decrease of neuritic tree length and complexity. In contrast, expression of exogenous Hsp27 in these neurons resulted in an increase in neuritic tree length and branching. Collectively, these results demonstrate that Hsp27 may play a role in neuritic growth via modulation of the actin cytoskeleton. © 2006 Wiley-Liss, Inc. [source]


Functional integrin subunits regulating cell,matrix interactions in the intervertebral disc

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2007
Christopher L. Gilchrist
Abstract Cellular interactions with the extracellular matrix are key factors regulating cell survival, differentiation, and response to environmental stimuli in cartilagenous tissues. Much is known about the extracellular matrix proteins in the intervertebral disc (IVD) and their variations with region, age, or degenerative state of the tissue. In contrast, little is known of the integrin cell surface receptors that directly bind to and interact with these matrix proteins in the IVD. In almost all tissues, these integrin-mediated cell,matrix interactions are important for transducing environmental cues arising from mechanical stimuli, matrix degradation fragments, and cytokines into intracellular signals. In this study, cells from the nucleus pulposus and anulus fibrosus regions of porcine IVDs were analyzed via flow cytometry to quantify integrin expression levels upon isolation and after monolayer culture. Assays of cell attachment to collagens, fibronectin, and laminin were performed after functional blocking of select integrin subunits to evaluate the role of specific integrins in cell attachment. In situ distribution and co-localization of integrins and laminin were also characterized. Results identify integrin receptors critical for IVD cell interactions with collagens (,1,1) and fibronectin (,5,1). Additionally, dramatic differences in cell,laminin interactions were observed between cells of the nucleus and anulus regions, including differences in ,6 integrin expression, cell adhesion to laminin, and in situ pericellular environments. These findings suggest laminin,cell interactions may be important and unique to the nucleus pulposus region of the IVD. The results of this study provide new information on functional cell,matrix interactions in tissues of the IVD. © 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25: 829,840, 2007 [source]


Differential effects of static and dynamic compression on meniscal cell gene expression

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2003
Maureen L. Upton
Abstract Cells of the meniscus are exposed to a wide range of time-varying mechanical stimuli that may regulate their metabolic activity in vivo. In this study, the biological response of the meniscus to compressive stimuli was evaluated in vitro, using a well-controlled explant culture system. Gene expression for relevant extracellular matrix proteins was quantified using real-time RT-PCR following a 24 h period of applied static (0.1 MPa compressive stress) or dynamic compression (0.08,0.16 MPa). Static and dynamic compression were found to differentially regulate mRNA levels for specific proteins of the extracellular matrix. Decreased mRNA levels were observed for decorin (,2.1 fold-difference) and type II collagen (,4.0 fold-difference) following 24 h of dynamic compression. Decorin mRNA levels also decreased following static compression (,4.5 fold-difference), as did mRNA levels for both types I (,3.3 fold-difference) and II collagen (,4.0 fold-difference). Following either static or dynamic compression, mRNA levels for aggrecan, biglycan and cytoskeletal proteins were unchanged. It is noteworthy that static compression was associated with a 2.6 fold-increase in mRNA levels for collagenase, or MMP-1, suggesting that the homeostatic balance between collagen biosynthesis and catabolism was altered by the mechanical stimuli. These findings demonstrate that the biosynthetic response of the meniscus to compression is regulated, in part, at the transcriptional level and that transcription of types I and II collagen as well as decorin may be regulated by common mechanical stimuli. © 2003 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


The relative orientation of the Arg and Asp side chains defined by a pseudodihedral angle as a key criterion for evaluating the structure,activity relationship of RGD peptides

JOURNAL OF PEPTIDE SCIENCE, Issue 8 2004
Sarantos Kostidis
Abstract The ability of an integrin to distinguish between the RGD-containing extracellular matrix proteins is thought to be due partially to the variety of RGD conformations. Three criteria have been proposed for the evaluation of the structure,activity relationship of RGD-containing peptides. These include: (i) the distance between the charged centres, (ii) the distance between the Arg C, and Asp C, atoms, and (iii) the pseudo-dihedral angle defining the Arg and Asp side-chain orientation formed by the Arg C,, Arg C,, Asp C, and Asp C, atoms. A comparative conformation,activity study was performed between linear RGD peptides and strongly constrained cyclic (S,S) -CDC- bearing compounds, which cover a wide range of inhibition potency of platelet aggregation. It is concluded that the fulfilment of the ,45° , pseudo-dihedral angle , +45° criterion is a prerequisite for an RGD compound to exhibit inhibitory activity. Once this criterion is accomplished, the longer the distance between the charged centres and/or between the Arg and Asp C, atoms, the higher is the biological activity. In addition, the stronger the ionic interaction between Arg and Asp charged side chains, the lower the anti-aggregatory activity. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd. [source]


PerioGlas® Regulates Osteoblast RNA Interfering

JOURNAL OF PROSTHODONTICS, Issue 7 2008
Annalisa Palmieri PhD
Abstract Purpose: PerioGlas® (PG) is an alloplastic material that has been used for grafting periodontal osseous defects since the 1990s. In animal models, it has been proven that PG achieves histologically good repairs of surgically created defects. In clinical trials, PG is effective as an adjunct to conventional surgery in the treatment of intrabony defects; however, how PG alters osteoblast activity to promote bone formation is poorly understood. We therefore attempted to address this question by using microRNA (miRNA) microarray techniques to investigate the translation process in osteoblasts exposed to PG. Materials and Methods: By using miRNA microarrays containing 329 probes designed from human miRNA sequences, we identified several miRNA whose expression was significantly modified in osteoblast-like cell lines (MG-63) cultured with PG. Results: There were ten up-regulated miRNA (mir-337, mir-377, mir-9, mir-516, mir-515-3p, mir-496, mir-200b, mir-489, mir-25, mir-423) and two down-regulated miRNA (mir-26a, mir-30d). Conclusion: PG acts on miRNAs, which in turn regulate several messengers. Among them there are mRNAs related to bone formation and skeletal and cartilage development. The vast majority of detected genes are down-regulated, and some are homeobox genes like NOG, EN1, and CHRD. Other down-regulated genes are receptors (like GHRHR) and extracellular matrix proteins (like COMP). Although the exact mechanism of PG action on osteoblasts is still incompletely understood, these data demonstrate that PG has not only an osteoconductive effect, but also regulates bone formation. [source]