Home About us Contact | |||
Extracellular K+ (extracellular + k+)
Terms modified by Extracellular K+ Selected AbstractsDevelopmental changes in the modulation of respiratory rhythm generation by extracellular K+ in the isolated bullfrog brainstemDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003Rachel E. Winmill Abstract This study tested the hypothesis that voltage-dependent, respiratory-related activity in vitro, inferred from changes in [K+]o, changes during development in the amphibian brainstem. Respiratory-related neural activity was recorded from cranial nerve roots in isolated brainstem,spinal cord preparations from 7 premetamorphic tadpoles and 10 adults. Changes in fictive gill/lung activity in tadpoles and buccal/lung activity in adults were examined during superfusion with artificial CSF (aCSF) with [K+]o ranging from 1 to 12 mM (4 mM control). In tadpoles, both fictive gill burst frequency (fgill) and lung burst frequency (flung) were significantly dependent upon [K+]o (r2 > 0.75; p < 0.001) from 1 to 10 mM K+, and there was a strong correlation between fgill and flung (r2 = 0.65; p < 0.001). When [K+]o was raised to 12 mM, there was a reversible abolition of fictive breathing. In adults, fictive buccal frequency (fbuccal), was significantly dependent on [K+]o (r2 = 0.47; p < 0.001), but [K+]o had no effect on flung (p > 0.2), and there was no significant correlation between fbuccal and flung. These data suggest that the neural networks driving gill and lung burst activity in tadpoles may be strongly voltage modulated. In adults, buccal activity, the proposed remnant of gill ventilation in adults, also appears to be voltage dependent, but is not correlated with lung burst activity. These results suggest that lung burst activity in amphibians may shift from a "voltage-dependent" state to a "voltage-independent" state during development. This is consistent with the hypothesis that the fundamental mechanisms generating respiratory rhythm in the amphibian brainstem change during development. We hypothesize that lung respiratory rhythm generation in amphibians undergoes a developmental change from a pacemaker to network-driven process. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 278,287, 2003 [source] Metabotropic glutamate receptor 1 activity generates persistent, N -methyl- d -aspartate receptor-dependent depression of hippocampal pyramidal cell excitabilityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2009J. P. Clement Abstract Metabotropic glutamate receptors (mGluRs) are involved in many forms of neuronal plasticity. In the hippocampus, they have well-defined roles in long-lasting forms of both synaptic and intrinsic plasticity. Here, we describe a novel form of long-lasting intrinsic plasticity that we call (S)-3,5-dihydroxyphenylglycine (DHPG)-mediated long-term depression of excitability (DHPG-LDE), and which is generated following transient pharmacological activation of group I mGluRs. In extracellular recordings from hippocampal slices, DHPG-LDE was expressed as a long-lasting depression of antidromic compound action potentials (cAPs) in CA1 or CA3 cells following a 4-min exposure to the group I mGluR agonist (S)-DHPG. A similar phenomenon was also seen for orthodromic fibre volleys evoked in CA3 axons. In single-cell recordings from CA1 pyramids, DHPG-LDE was manifest as persistent failures in antidromic action potential generation. DHPG-LDE was blocked by (S)-(+)- a -amino-4-carboxy-2-methylbenzeneacetic acid (LY367385), an antagonist of mGluR1, but not 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), an mGluR5 inhibitor. Although insensitive to antagonists of ,-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate/kainate and ,-aminobutyric acidA receptors, DHPG-LDE was blocked by antagonists of N -methyl- d -aspartate (NMDA) receptors. Similarly, in single-cell recordings, DHPG-mediated antidromic spike failures were eliminated by NMDA receptor antagonism. Long after (S)-DHPG washout, DHPG-LDE was reversed by mGluR1 antagonism. A 4-min application of (S)-DHPG also produced an NMDA receptor-dependent persistent depolarization of CA1 pyramidal cells. This depolarization was not solely responsible for DHPG-LDE, because a similar level of depolarization elicited by raising extracellular K+ increased the amplitude of the cAP. DHPG-LDE did not involve HCN channels or protein synthesis, but was eliminated by blockers of protein kinase C or tyrosine phosphatases. [source] Synaptic and non-synaptic mechanisms of amygdala recruitment into temporolimbic epileptiform activitiesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2003Julia Klueva Abstract Lateral amygdala (LA) activity during synchronized-epileptiform discharges in temporolimbic circuits was investigated in rat horizontal slices containing the amygdala, hippocampus (Hip), perirhinal (Prh) and lateral entorhinal (LEnt) cortex, through multiple-site extra- and intracellular recording techniques and measurement of the extracellular K+ concentration. Application of 4-aminopyridine (50 µm) induced epileptiform discharges in all regions under study. Slow interictal-like burst discharges persisted in the Prh/LEnt/LA after disconnection of the Hip, seemed to originate in the Prh as shown from time delay analyses, and often preceded the onset of ictal-like activity. Disconnection of the amygdala resulted in de-synchronization of epileptiform discharges in the LA from those in the Prh/LEnt. Interictal-like activity was intracellularly reflected in LA projection neurons as ,-aminobutyric acid (GABA)A/B receptor-mediated synaptic responses, and depolarizing electrogenic events (spikelets) residing on the initial phase of the GABA response. Spikelets were considered antidromically conducted ectopic action potentials generated at axon terminals, as they were graded in amplitude, were not abolished through hyperpolarizing membrane responses (which effectively blocked evoked orthodromic action potentials), lacked a clear prepotential or synaptic potential, were not affected through blockers of gap junctions, and were blocked through remote application of tetrodotoxin at putative target areas of LA projection neurons. Remote application of a GABAB receptor antagonist facilitated spikelet generation. A transient elevation in the extracellular K+ level averaging 3 mm above baseline occurred in conjunction with interictal-like activity in all areas under study. We conclude that interictal-like discharges in the LA/LEnt/Prh spread in a predictable manner through the synaptic network with the Prh playing a leading role. The rise in extracellular K+ may provide a depolarizing mechanism for recruitment of interneurons and generation of ectopic action potentials at axon terminals of LA projection neurons. Antidromically conducted ectopic action potentials may provide a spreading mechanism of seizure activity mediated by diffuse axonal projections of LA neurons. [source] The action of high K+ and aglycaemia on the electrical properties and synaptic transmission in rat intracardiac ganglion neurones in vitroEXPERIMENTAL PHYSIOLOGY, Issue 2 2009Jhansi Dyavanapalli We have investigated the action of two elements of acute ischaemia, high potassium and aglycaemia, on the electrophysiological properties and ganglionic transmission of adult rat intracardiac ganglion (ICG) neurones. We used a whole-mount ganglion preparation of the right atrial ganglion plexus and sharp microelectrode recording techniques. Increasing extracellular K+ from its normal value of 4.7 mm to 10 mm decreased membrane potential and action potential after-hyperpolarization amplitude but otherwise had no effect on postganglionic membrane properties. It did, however, reduce the ability of synaptically evoked action potentials to follow high-frequency (100 Hz) repetitive stimulation. A further increase in K+ changed both the passive and the active membrane properties of the postganglionic neurone: time constant, membrane resistance and action potential overshoot were all decreased in high K+ (20 mm). The ICG neurones display a predominantly phasic discharge in response to prolonged depolarizing current pulses. High K+ had no impact on this behaviour but reduced the time-dependent rectification response to hyperpolarizing currents. At 20 mm, K+ practically blocked ganglionic transmission in most neurones at all frequencies tested. Aglycaemia, nominally glucose-free physiological saline solution (PSS), increased the time constant and membrane resistance of ICG neurones but otherwise had no action on their passive or active properties or ganglionic transmission. However, the combination of aglycaemia and 20 mm K+ displayed an improvement in passive properties and ganglionic transmission when compared with 20 mm K+ PSS. These data indicate that the presynaptic terminal is the primary target of high extracellular potassium and that aglycaemia may have protective actions against this challenge. [source] Regulation of glutamate carboxypeptidase II hydrolysis of N -acetylaspartylglutamate (NAAG) in crayfish nervous tissue is mediated by glial glutamate and acetylcholine receptorsJOURNAL OF NEUROCHEMISTRY, Issue 3 2005Albert K. Urazaev Abstract Glutamate carboxypeptidase II (GCPII), a glial ectoenzyme, is responsible for N -acetylaspartylglutamate (NAAG) hydrolysis. Its regulation in crayfish nervous tissue was investigated by examining uptake of [3H]glutamate derived from N -acetylaspartyl-[3H]glutamate ([3H]NAAG) to measure GCPII activity. Electrical stimulation (100 Hz, 10 min) during 30 min incubation with [3H]NAAG increased tissue [3H]glutamate tenfold. This was prevented by 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a GCPII inhibitor, suggesting that stimulation increased the hydrolysis of [3H]NAAG and metabolic recycling of [3H]glutamate. Antagonists of glial group II metabotropic glutamate receptors (mGLURII), NMDA receptors and acetylcholine (ACh) receptors that mediate axon,glia signaling in crayfish nerve fibers decreased the effect of stimulation by 58,83%, suggesting that glial receptor activation leads to stimulation of GCPII activity. In combination, they reduced [3H]NAAG hydrolysis during stimulation to unstimulated control levels. Agonist stimulation of mGLURII mimicked the effect of electrical stimulation, and was prevented by antagonists of GCPII or mGLURII. Raising extracellular K+ to three times the normal level stimulated [3H]NAAG release and GCPII activity. These effects were also blocked by antagonists of GCPII and mGLURII. No receptor antagonist or agonist tested or 2-PMPA affected uptake of [3H]glutamate. We conclude that NAAG released from stimulated nerve fibers activates its own hydrolysis via stimulation of GCPII activity mediated through glial mGLURII, NMDA and ACh receptors. [source] Model-Based Analysis of Potassium Removal During HemodialysisARTIFICIAL ORGANS, Issue 10 2009Andrea Ciandrini Abstract Potassium ion (K+) kinetics in intra- and extracellular compartments during dialysis was studied by means of a double-pool computer model, which included potassium-dependent active transport (Na-K-ATPase pump) in 38 patients undergoing chronic hemodialysis. Each patient was treated for 2 weeks with a constant K+ dialysate concentration (K+CONST therapy) and afterward for 2 weeks with a time-varying (profiled) K+ dialysate concentration (K+PROF therapy). The two therapies induced different levels of K+ plasma concentration (K+CONST: 3.71 ± 0.88 mmol/L vs. K+PROF: 3.97 ± 0.64 mmol/L, time-averaged values, P < 0.01). The computer model was tuned to accurately fit plasmatic K+ measured in the course and 1 h after K+CONST and K+PROF therapies and was then used to simulate the kinetics of intra- and extracellular K+. Model-based analysis showed that almost all the K+ removal in the first 90 min of dialysis was derived from the extracellular compartment. The different K+ time course in the dialysate and the consequently different Na-K pump activity resulted in a different sharing of removed potassium mass at the end of dialysis: 56% ± 17% from the extracellular compartment in K+PROF versus 41% ± 14% in K+CONST. At the end of both therapies, the K+ distribution was largely unbalanced, and, in the next 3 h, K+ continued to flow in the extracellular space (about 24 mmol). After rebalancing, about 80% of the K+ mass that was removed derived from the intracellular compartment. In conclusion, the Na-K pump plays a major role in K+ apportionment between extracellular and intracellular compartments, and potassium dialysate concentration strongly influences pump activity. [source] Effect of K+ and Rb+ on the action of verapamil on a voltage-gated K+ channel, hKv1.3: implications for a second open state?BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2009Z Kuras Background and purpose:, Verapamil blocks current through the voltage-gated K+ channel Kv1.3 in the open and inactivated state of the channel but not the closed state. The binding site for verapamil was proposed to be close to the selectivity filter and the occupancy of the selectivity filter might therefore influence verapamil affinity. Experimental approach:, We investigated the influence of intra- and extracellular K+ and Rb+ on the effect of verapamil by patch-clamp studies, in COS-7 cells transfected with hKv1.3 channels. Key results:, Verapamil affinity was highest in high intracellular K+ concentrations ([K+]i) and lowest in low [Rb+]i, indicating an influence of intracellular cations on verapamil affinity. Experiments with a mutant channel (H399T), exhibiting a strongly reduced C-type inactivated state, demonstrated that part of this changed verapamil affinity in wild-type channels could be caused by altered C-type inactivation. External K+ and Rb+ could influence verapamil affinity by a voltage-dependent entry into the channel thereby modifying the verapamil off-rate and in addition causing a voltage-dependent verapamil off-rate. Conclusions and implications:, Recovery from verapamil block was mainly due to the voltage-dependent closing of channels (state-dependent block), implying a second open state of the channel. This hypothesis was confirmed by the dependency of the tail current time course on duration of the prepulse. We conclude that the wild-type hKv1.3 channel undergoes at least two different conformational changes before finally closing with a low verapamil affinity in one open state and a high verapamil affinity in the other open state. [source] The role of TASK1 in aldosterone production and its expression in normal adrenal and aldosterone-producing adenomasCLINICAL ENDOCRINOLOGY, Issue 1 2010Edson F. Nogueira Summary Objectives, Aldosterone production in the adrenal glomerulosa is mainly regulated by angiotensin II and K+. Adrenal glomerulosa cells are uniquely sensitive to extracellular K+. Genetic deletion of subunits of K+ -selective leak-channels (KCNK), TASK1 and/or TASK3, in mice generates animals with hyperaldosteronism and histological changes in the adrenal cortex. Herein, we studied the expression of TASK1 in human adrenocortical cells, as well as its role in aldosterone production in H295R cells. Design, TASK1 expression was investigated by comparative microarray analysis of aldosterone-producing adenomas (APA) and normal adrenals (NAs). The effects of TASK1 knockdown by siRNA transfection were investigated in H295R cells. Fluo-4 fluorescent measurements of intracellular Ca2 + and pharmacological inhibition of Ca2 + -dependent calmodulin kinases (CaMK) were performed to better define the effects of TASK1 on Ca2 + signalling pathways. Results, Microarray analysis of APA and NA showed similar expression of TASK1 between these two groups. However, in APA, NA and H295R cells the expression of TASK1 was predominant when compared with other KCNK family members. Knockdown of TASK1 (with siRNA) induced the expression of steroidogenic acute regulatory (StAR) protein and aldosterone synthase (CYP11B2), and also stimulated pregnenolone and aldosterone production. Cells transfected with siTASK1 had increased intracellular Ca2 + , leading to activation of CaMK and increased expression of CYP11B2. Conclusions, Our study reveals the predominant expression of TASK1 over other KCNK family genes in the human adrenal cortex. Herein, we also described the role of TASK1 in the regulation of human aldosterone production through regulation of intracellular Ca2 + and CaMK signalling pathways. [source] |