Extracellular Enzymes (extracellular + enzyme)

Distribution by Scientific Domains

Terms modified by Extracellular Enzymes

  • extracellular enzyme activity

  • Selected Abstracts


    EXTRACELLULAR ENZYMES OF THE MICROCYSTIS AERUGINOSA PCC 7813 STRAIN ARE INHIBITED IN THE PRESENCE OF HYDROQUINONE AND PYROGALLOL, ALLELOCHEMICALS PRODUCED BY AQUATIC PLANTS,

    JOURNAL OF PHYCOLOGY, Issue 6 2009
    Dariusz Dziga
    Several cyanobacterial species have a high potential to dominate in marine environments and freshwater reservoirs, and the ecological and physiological reasons for this phenomenon are not understood comprehensively. In this study, the ability of a Microcystis aeruginosa Kütz. strain to produce free dissolved enzymes was documented. We have observed that this highly toxic strain releases alkaline phosphatase, leucine aminopeptidase, and ,-glucosidase into the ambient environment. Additionally, the inhibitory activity of selected phenols produced by aquatic plants on the activity of these enzymes was analyzed. The investigated compounds, pyrogallol and, to a lesser degree, hydroquinone, decreased the activity of extracellular enzymes produced by M. aeruginosa, with leucine aminopeptidase being the most sensitive to the inhibitors. The noncompetitive character of enzymatic inhibition suggests that the polyphenols produced by aquatic plants are able to influence the activity of different extracellular or membrane-bound enzymes. [source]


    The association between non-biting midges and Vibrio cholerae

    ENVIRONMENTAL MICROBIOLOGY, Issue 12 2008
    Meir Broza
    Summary Vibrio cholerae is a natural inhabitant of aquatic ecosystems, yet its interactions within this habitat are poorly understood. Here we describe the current knowledge on the interaction of V. cholerae with one group of co-inhabitants, the chironomids. Chironomids, non-biting midges (Chironomidae, Diptera), are an abundant macroinvertebrate group encountered in freshwater aquatic habitats. As holometabolous insects, chironomids start life when their larvae hatch from eggs laid at the water/air interface; through various feeding strategies, the larvae grow and pupate to become short-lived, non-feeding, adult flying insects. The discovery of the connection between V. cholerae and chironomids was accidental. While working with Chironomus transavaalensis, we observed the disintegration of its egg masses and searched for a possible microbial agent. We identified V. cholerae as the primary cause of this phenomenon. Haemagglutinin/protease, a secreted extracellular enzyme, degraded the gelatinous matrix surrounding the eggs, enabling bacterial growth. Observation of chironomids in relation to V. cholerae continuously for 7 years in various types of water bodies in Israel, India, and Africa revealed that environmental V. cholerae adhere to egg-mass surfaces of various Chironomini (,bloodworms'). The flying adults' potential to serve as mechanical vectors of V. cholerae from one water body to another was established. This, in turn, suggested that these insects play a role in the ecology of V. cholerae and possibly take part in the dissemination of the pathogenic serogroups during, and especially between, epidemics. [source]


    Crystallization and preliminary X-ray diffraction analysis of the fructofuranosidase from Schwanniomyces occidentalis

    ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 11 2009
    Aitana Polo
    Schwanniomyces occidentalis invertase is an extracellular enzyme that releases ,-fructose from the nonreducing termini of various ,- d -fructofuranoside substrates. Its ability to produce 6-kestose by transglycosylation makes this enzyme an interesting research target for applications in industrial biotechnology. The enzyme has been expressed in Saccharomyces cerevisiae. Recombinant and wild-type forms, which showed different glycosylation patterns, were crystallized by vapour-diffusion methods. Although crystallization trials were conducted on both forms of the protein, crystals suitable for X-ray crystallographic analyses were only obtained from the wild-type enzyme. The crystals belonged to space group P212121, with unit-cell parameters a = 105.78, b = 119.49, c = 137.68,Å. A diffraction data set was collected using a synchrotron source. Self-rotation function and sedimentation-velocity experiments suggested that the enzyme was dimeric with twofold symmetry. [source]


    Production of a Polyester Degrading Extracellular Hydrolase from Thermomonospora fusca

    BIOTECHNOLOGY PROGRESS, Issue 5 2002
    Mona K. Gouda
    The production of a polyester-degrading hydrolase from the thermophilic actinomycete Thermomonospora fusca was investigated with regard to its potential technical application. Only in the presence of a polyester (random aliphatic-aromatic copolyester from 1,4-butanediol, terephthalic acid, and adipic acid with around 40,50 mol % terephthalic acid in the acid component), the excretion of the extracellular enzyme could be achieved with an optimized synthetic medium using pectin and NH4Cl as nitrogen source. Compared to complex media, a significantly higher specific activity at comparable volumetric yields could be obtained, thus reducing the expenditure for purification. The activity profile in the medium is controlled by a complex process involving (1) induction of enzyme excretion, (2) enzyme adsorption on the hydrophobic polyester surface, (3) inhibition of enzyme generation by monomers produced by polyester cleavage, and (4) enzyme denaturation. Diafiltration with cellulose acetate membranes as the sole downstream processing step led to a product of high purity and with sufficient yield (60% of total activity). Scaling-up from shaking flasks to a fermentor scale of 100 L revealed no specific problems. However, the excretion of the hydrolase by the actinomycete turned out to be inhibited by the degradation products (monomers) of the aliphatic-aromatic copolyester used as inductor for the enzyme production. The crude enzyme exhibited generally similar properties (temperature and pH optimum) as the highly purified hydrolase described previously; however, the storage capability and thermal stability is improved when the crude enzyme solution is diafiltrated. [source]


    White-rot fungi combined with lignite granules and lignitic xylite to decolorize textile industry wastewater

    ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 1 2010
    Ulrike Böhmer
    Abstract The feasibility of using immobilized fungi to decolorize textile industry wastewater containing dyes was examined in experiments with: two species of white-rot fungi (a Marasmius species from Indonesia, which produces copious biomass, and Trametes hirsuta, which produces high levels of laccase); two types of lignite products as adsorbents and solid substrates (lignitic xylite and lignite granules); and four simulated wastewaters, each containing a different kinds of reactive textile azo dye. The growth, extracellular enzyme production, dye degradation and dye absorption parameters afforded by each permutation of fungus, substrate and dye were then measured. Both fungal species grew poorly on xylite, but much better on lignite granules. Marasmius sp. produced up to 67,U/L laccase on lignite granules, but just 10,U/L on xylite, and no other detectable extracellular enzymes. T. hirsuta produced 1343,U/L laccase and up to 12,U/L unspecific peroxidase when immobilized on lignite granules, and 898,U/L laccase with 14,U/L unspecific peroxidase when immobilized on xylite. The amount of color lost from the dye solutions depended on both the type of dye and the enzyme levels in the fermenter. [source]


    Characterization of ,- d -glucosidase extracted from soil fractions

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2000
    M. D. Busto
    Summary One way to study the state in which stabilized extracellular enzymes persist and are active in the soil is by extraction from the soil, with subsequent fractionation of enzyme,organomineral complexes and characterization of such complexes. In order to investigate the location and characteristics of soil ,-glucosidase, three soil fractions were obtained both from real (undisturbed) soil aggregates and from structural (dispersed in water and physically disrupted) aggregates using two different granulometric procedures. The ,-glucosidase activity of the fraction was then assayed. When the aggregates were dispersed, more than 73% of activity was in the soil microaggregates with diameters of less than 50 ,m (SF50). These aggregates were associated with strongly humified organic matter. Solutions of diluted pyrophosphate at neutral pH liberated active ,-glucosidase from all fractions, although the efficacy of extraction varied according to the type of fraction. The SF50 fraction and aggregates of 2000,100 ,m obtained by sieving (SF2000) showed the greatest ,-glucosidase activity (34.5 and 36.0%, respectively). Micro- and ultrafiltration of SF50 extracts increased the total ,-glucosidase activity, whereas these procedures, applied to the RF2000 fraction, decreased it. Humus,,-glucosidase complexes in the SF50 fraction, between 0.45 ,m and 105 nominal molecular weight limit ( nmwl) (SF50II) and < 105nmwl (SF50III) showed an optimum pH at 5.4, and in the SF50I fraction (> 0.45 ,m) the optimum was 4.0. The stability of ,-glucosidase in the aggregates of the smallest size SF50II and SF50III decreased at acid pHs. The presence of two enzymes (or two forms of the same enzyme) catalysing the same reaction with different values of Michaelis constant and maximum velocity was observed in all but one of the ,-glucosidase complexes extracted and partially purified from the SF50 aggregates. [source]


    The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils

    GLOBAL CHANGE BIOLOGY, Issue 9 2010
    DANIELA F. CUSACK
    Abstract Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in tropical ecosystems. In this study, we used controlled laboratory incubations of soils from a long-term N fertilization experiment to explore the sensitivity of soil C to increased N in two N-rich tropical forests. We found that fertilization corresponded to significant increases in bulk soil C concentrations, and decreases in C loss via heterotrophic respiration (P< 0.05). The increase in soil C was not uniform among C pools, however. The active soil C pool decomposed faster with fertilization, while slowly cycling C pools had longer turnover times. These changes in soil C cycling with N additions corresponded to the responses of two groups of microbial extracellular enzymes. Smaller active C pools corresponded to increased hydrolytic enzyme activities; longer turnover times of the slowly cycling C pool corresponded to reduced activity of oxidative enzymes, which degrade more complex C compounds, in fertilized soils. Warming increased soil respiration overall, and N fertilization significantly increased the temperature sensitivity of slowly cycling C pools in both forests. In the lower elevation forest, respired CO2 from fertilized cores had significantly higher ,14C values than control soils, indicating losses of relatively older soil C. These results indicate that soil C storage is sensitive to both N deposition and warming in N-rich tropical soils, with interacting effects of these two global change factors. N deposition has the potential to increase total soil C stocks in tropical forests, but the long-term stability of this added C will likely depend on future changes in temperature. [source]


    Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils

    GLOBAL CHANGE BIOLOGY, Issue 7 2009
    MATTHEW D. WALLENSTEIN
    Abstract Arctic soils contain large amounts of organic matter due to very slow rates of detritus decomposition. The first step in decomposition results from the activity of extracellular enzymes produced by soil microbes. We hypothesized that potential enzyme activities are low relative to the large stocks of organic matter in Arctic tundra soils, and that enzyme activity is low at in situ temperatures. We measured the potential activity of six hydrolytic enzymes at 4 and 20 °C on four sampling dates in tussock, intertussock, shrub organic, and shrub mineral soils at Toolik Lake, Alaska. Potential activities of N -acetyl glucosaminidase, ,-glucosidase, and peptidase tended to be greatest at the end of winter, suggesting that microbes produced enzymes while soils were frozen. In general, enzyme activities did not increase during the Arctic summer, suggesting that enzyme production is N-limited during the period when temperatures would otherwise drive higher enzyme activity in situ. We also detected seasonal variations in the temperature sensitivity (Q10) of soil enzymes. In general, soil enzyme pools were more sensitive to temperature at the end of the winter than during the summer. We modeled potential in situ,-glucosidase activities for tussock and shrub organic soils based on measured enzyme activities, temperature sensitivities, and daily soil temperature data. Modeled in situ enzyme activity in tussock soils increased briefly during the spring, then declined through the summer. In shrub soils, modeled enzyme activities increased through the spring thaw into early August, and then declined through the late summer and into winter. Overall, temperature is the strongest factor driving low in situ enzyme activities in the Arctic. However, enzyme activity was low during the summer, possibly due to N-limitation of enzyme production, which would constrain enzyme activity during the brief period when temperatures would otherwise drive higher rates of decomposition. [source]


    Effect of wine yeast monoculture practice on the biodiversity of non- Saccharomyces yeasts

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2004
    M.A. Ganga
    Abstract Aims:, The objective of this work was to study the effect of the use of Saccharomyces cerevisiae monocultures over the biodiversity of non- Saccharomyces yeasts in wine-producing areas in Chile. Methods and Results:, Microvinifications were carried out with grape musts of two areas. In one of them, the fermentation is carried out mainly in a spontaneous manner, whereas in the other the musts are inoculated with commercial yeasts. The isolated yeasts were identified by the internal transcribed (ITS)/restriction fragment length polymorphism technique. In the industrial production area less variability of yeast genera was observed as compared with the traditional area, an observation that is greatest at the end of the fermentation. Furthermore, a study of the production of extracellular enzymes was done. The majority of the yeasts showed at least one of the activities assayed with the exception of , -glycosidase. Conclusion:, The results suggest that in the industrialized area the diversity of yeasts is less in the traditional area. Likewise, the potentiality of the non- Saccharomyces yeasts as enzyme producers with industrial interest has been confirmed. Significance and Impact of the Study:, This study shows the negative effect of the use of monocultures over the biodiversity of yeasts in wine-producing regions. [source]


    Specificities of proteases for use in leather manufacture

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2006
    Farhad Foroughi
    Abstract Proteases are used in leather manufacture in the processes of soaking, unhairing and bating of hides and skins. However proteases can be relatively non-specific in their usage, and for improved efficacy of enzyme biocatalysis within the industry, an analysis of specific activities of enzymes towards skin proteins was undertaken. Most commercial proteases for soaking showed substantial activity against the substrates elastin,Congo Red and Azocoll but little or no activity against keratin,azure and hide powder black. Enzymes used for unhairing in conjunction with 30% of the usual concentration of sulfide to effect chemical unhairing showed moderate activity against all substrates tested (selected as representative of skin proteins), while proteases used in bating showed activity against Azocoll and elastin,Congo Red but had no keratinase activity and little activity against hide powder black. Bating proteases and soaking proteases displayed similar activities at pH 8. Microbes isolated in the screening of organisms from putrefied skins included one fungal and two bacterial isolates whose extracellular enzymes had efficient unhairing activity without the addition of sulfide. Enzyme activities for these proteases included high activity measured against Azocoll with little or no activity against elastin,Congo Red, keratin,azure and hide powder black. Neither elastase nor keratinase activities were determined as being essential for unhairing. Copyright © 2005 Society of Chemical Industry [source]


    EXTRACELLULAR ENZYMES OF THE MICROCYSTIS AERUGINOSA PCC 7813 STRAIN ARE INHIBITED IN THE PRESENCE OF HYDROQUINONE AND PYROGALLOL, ALLELOCHEMICALS PRODUCED BY AQUATIC PLANTS,

    JOURNAL OF PHYCOLOGY, Issue 6 2009
    Dariusz Dziga
    Several cyanobacterial species have a high potential to dominate in marine environments and freshwater reservoirs, and the ecological and physiological reasons for this phenomenon are not understood comprehensively. In this study, the ability of a Microcystis aeruginosa Kütz. strain to produce free dissolved enzymes was documented. We have observed that this highly toxic strain releases alkaline phosphatase, leucine aminopeptidase, and ,-glucosidase into the ambient environment. Additionally, the inhibitory activity of selected phenols produced by aquatic plants on the activity of these enzymes was analyzed. The investigated compounds, pyrogallol and, to a lesser degree, hydroquinone, decreased the activity of extracellular enzymes produced by M. aeruginosa, with leucine aminopeptidase being the most sensitive to the inhibitors. The noncompetitive character of enzymatic inhibition suggests that the polyphenols produced by aquatic plants are able to influence the activity of different extracellular or membrane-bound enzymes. [source]


    Abscisic acid deficiency leads to rapid activation of tomato defence responses upon infection with Erwinia chrysanthemi

    MOLECULAR PLANT PATHOLOGY, Issue 1 2008
    BOB ASSELBERGH
    SUMMARY In addition to the important role of abscisic acid (ABA) in abiotic stress signalling, basal and high ABA levels appear to have a negative effect on disease resistance. Using the ABA-deficient sitiens tomato (Solanum lycopersicum) mutant and different application methods of exogenous ABA, we demonstrated the influence of this plant hormone on disease progression of Erwinia chrysanthemi. This necrotrophic plant pathogenic bacterium is responsible for soft rot disease on many plant species, causing maceration symptoms mainly due to the production and secretion of pectinolytic enzymes. On wild-type (WT) tomato cv. Moneymaker E. chrysanthemi leaf inoculation resulted in maceration both within and beyond the infiltrated zone of the leaf, but sitiens showed a very low occurrence of tissue maceration, which never extended the infiltrated zone. A single ABA treatment prior to infection eliminated the effect of pathogen restriction in sitiens, while repeated ABA spraying during plant development rendered both WT and sitiens very susceptible. Quantification of E. chrysanthemi populations inside the leaf did not reveal differences in bacterial growth between sitiens and WT. Sitiens was not more resistant to pectinolytic cell-wall degradation, but upon infection it showed a faster and stronger activation of defence responses than WT, such as hydrogen peroxide accumulation, peroxidase activation and cell-wall fortifications. Moreover, the rapid activation of sitiens peroxidases was also observed after application of bacteria-free culture filtrate containing E. chrysanthemi cell-wall-degrading enzymes and was absent during infection with an out E. chrysanthemi mutant impaired in secretion of these extracellular enzymes. [source]


    The secretome of Pleurotus sapidus

    PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 18 2005
    Holger Zorn Dr.
    Abstract Due to their unique capability to attack lignified biopolymers, extracellular enzymes of white-rot fungi enjoy an increasing interest in various fields of white biotechnology. The edible fungus Pleurotus sapidus was selected as a model organism for the analysis of the secretome by means of 2-DE. For enzyme production, the fungus was grown in submerged cultures either on peanut shells or on glass wool as a carrier material. Identification of the secreted enzymes was performed by tryptic digestion, ESI-MS/MS ab initio sequencing, and homology searches against public databases. The spectrum of secreted enzymes comprised various types of hydrolases and lignolytic enzymes of the manganese peroxidase/versatile peroxidase family. While peptidases were secreted mainly by the cultures grown on peanut shells, versatile peroxidase type enzymes dominated in the cultures grown on glass wool. [source]


    Cooperation and cheating in microbial exoenzyme production , Theoretical analysis for biotechnological applications

    BIOTECHNOLOGY JOURNAL, Issue 7 2010
    Stefan Schuster
    Abstract The engineering of microorganisms to produce a variety of extracellular enzymes (exoenzymes), for example for producing renewable fuels and in biodegradation of xenobiotics, has recently attracted increasing interest. Productivity is often reduced by "cheater" mutants, which are deficient in exoenzyme production and benefit from the product provided by the "cooperating" cells. We present a game-theoretical model to analyze population structure and exoenzyme productivity in terms of biotechnologically relevant parameters. For any given population density, three distinct regimes are predicted: when the metabolic effort for exoenzyme production and secretion is low, all cells cooperate; at intermediate metabolic costs, cooperators and cheaters coexist; while at high costs, all cells use the cheating strategy. These regimes correspond to the harmony game, snowdrift game, and Prisoner's Dilemma, respectively. Thus, our results indicate that microbial strains engineered for exoenzyme production will not, under appropriate conditions, be outcompeted by cheater mutants. We also analyze the dependence of the population structure on cell density. At low costs, the fraction of cooperating cells increases with decreasing cell density and reaches unity at a critical threshold. Our model provides an estimate of the cell density maximizing exoenzyme production. [source]


    Extracellular Enzyme Activities and Carbon Chemistry as Drivers of Tropical Plant Litter Decomposition

    BIOTROPICA, Issue 3 2004
    Steven D. Allison
    ABSTRACT Litter quality parameters such as nitrogen and lignin content correlate with decomposition rates at coarse scales, but fine-scale mechanisms driving litter decomposition have proven more difficult to generalize. One potentially important driver of decomposition is the activity of extracellular enzymes that catalyze the degradation of complex compounds present in litter. To address the importance of this mechanism, we collected 15 Hawaiian plant litter types and decomposed them in fertilized and control plots for up to two years. We measured litter nutrient content and carbon chemistry prior to decomposition, as well as extracellular enzyme activities, mass loss, and litter nutrient content over time. We found that water-soluble carbon content, cellobiohydrolase activities, and polyphenol oxidase activities were significantly correlated with mass loss. Enzyme activities and decomposition rate constants both varied significantly by litter type, and fertilization increased mass loss rates in five litter types. Some litter types that decayed faster under fertilization also showed time-dependent increases in carbon-degrading enzyme activities, but others decayed faster independent of enzyme changes. These results suggest that extracellular enzyme activities partially determine litter decomposition rates, but high soluble carbon content may circumvent the requirement for enzyme-catalyzed decomposition. [source]


    Activity of CuZn-superoxide dismutase, catalase and glutathione peroxidase in erythrocytes in kidney allografts during reperfusion in patients with and without delayed graft function

    CLINICAL TRANSPLANTATION, Issue 1 2006
    L Doma
    Abstract:, Background:, Generation of reactive oxygen species (ROS) is the main mechanism involved in the ischemic/reperfusion damage of the transplanted organ. Oxygen burst is a trigger for complex biochemical events leading to generation of oxygenated lipids and changes in microcirculation. Many markers have been researched to prove the presence of ROS in the transplanted tissue. Some of them, like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) are considered to play a major role in graft protection against oxygen stress during reperfusion. Methods:, The aim of this study was to examine the changes of SOD1, CAT and GPx activity in erythrocytes during the first minutes after total graft reperfusion. Forty patients undergoing kidney transplantation at our center were assigned to two groups: with or without delayed graft function (DGF). Before anastomosing kidney vessels with recipient's iliac vessels, the ,0' blood sample was taken from the iliac vein. Next blood samples I, II and III were taken from the graft's renal vein. The reperfusion of the transplanted kidney was evaluated precisely with the thermovision camera. Erythrocyte SOD1, CAT and GPx activity was measured with a spectrophotometric method. Results:, We did not observe statistically significant changes in SOD1, CAT and GPx activity in erythrocytes during the early phase of reperfusion in patients with and without DGF. Conclusions:, Erythrocyte-antioxidative system in graft's vein remain stable during the early phase of reperfusion. The results of the study suggest that further studies on extracellular enzymes are required for the assessment of antioxidant system in the conditions of ischemia/reperfusion. [source]