Extracellular Environment (extracellular + environment)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Combinatorial treatments for promoting axon regeneration in the CNS: Strategies for overcoming inhibitory signals and activating neurons' intrinsic growth state

DEVELOPMENTAL NEUROBIOLOGY, Issue 9 2007
Larry I. Benowitz
Abstract In general, neurons in the mature mammalian central nervous system (CNS) are unable to regenerate injured axons, and neurons that remain uninjured are unable to form novel connections that might compensate for ones that have been lost. As a result of this, victims of CNS injury, stroke, or certain neurodegenerative diseases are unable to fully recover sensory, motor, cognitive, or autonomic functions. Regenerative failure is related to a host of inhibitory signals associated with the extracellular environment and with the generally low intrinsic potential of mature CNS neurons to regenerate. Most research to date has focused on extrinsic factors, particularly the identification of inhibitory proteins associated with myelin, the perineuronal net, glial cells, and the scar that forms at an injury site. However, attempts to overcome these inhibitors have resulted in relatively limited amounts of CNS regeneration. Using the optic nerve as a model system, we show that with appropriate stimulation, mature neurons can revert to an active growth state and that when this occurs, the effects of overcoming inhibitory signals are enhanced dramatically. Similar conclusions are emerging from studies in other systems, pointing to a need to consider combinatorial treatments in the clinical setting. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source]


Autoinducers extracted from microbial mats reveal a surprising diversity of N -acylhomoserine lactones (AHLs) and abundance changes that may relate to diel pH

ENVIRONMENTAL MICROBIOLOGY, Issue 2 2009
Alan W. Decho
Summary Microbial mats are highly structured and diverse communities, and one of the earliest-known life assemblages. Mat bacteria interact within an environment marked by strong geochemical gradients and fluctuations. We examined natural mat systems for the presence of autoinducers involved in quorum sensing, a form of cell,cell communication. Our results revealed that a diverse array of N -acylhomoserine lactones (AHLs) including C4 - to C14 -AHLs, were identified from mat extracts using mass spectrometry (MS), with further confirmation by MS/MS-collision-induced dissociation (CID), and additions of external standards. Microelectrode measurements showed that mats exhibited diel pH fluctuations, ranging from alkaline (pH 9.4) during daytime (net photosynthesis) to acidic (pH 6.8) during darkness (net respiration/fermentation). Under laboratory conditions, AHLs having shorter acyl-chains were degraded within the time frame that daily alkaline pH (> 8.2) conditions exist in mats. Intensive sampling of mats after full day- or night-time incubations revealed that accumulations of extractable shorter-chain AHLs (e.g. C8 - and C10 -AHLs) were significantly (P < 0.001) diminished during daytime. Our study offers evidence that stabilities of AHLs under natural conditions may be influenced by the proximal extracellular environment. We further propose that the ancient periodicity of photosynthesis/respiration in mats may potentially drive a mechanism for diel differences in activities of certain autoinducers, and hence bacterial activities mediated through quorum sensing. [source]


From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2000
Minireview
It is becoming apparent that several intracellular bacterial pathogens of humans can also survive within protozoa. This interaction with protozoa may protect these pathogens from harsh conditions in the extracellular environment and enhance their infectivity in mammals. This relationship has been clearly established in the case of the interaction between Legionella pneumophila and its protozoan hosts. In addition, the adaptation of bacterial pathogens to the intracellular life within the primitive eukaryotic protozoa may have provided them with the means to infect the more evolved mammalian cells. This is evident from the existence of several similarities, at both the phenotypic and the molecular levels, between the infection of mammalian and protozoan cells by L. pneumophila. Thus, protozoa appear to play a central role in the transition of bacteria from the environment to mammals. In essence, protozoa may be viewed as a ,biological gym', within which intracellular bacterial pathogens train for their encounters with the more evolved mammalian cells. Thus, intracellular bacterial pathogens have benefited from the structural and biochemical conservation of cellular processes in eukaryotes. The interaction of intracellular bacterial pathogens and protozoa highlights this conservation and may constitute a simplified model for the study of these pathogens and the evolution of cellular processes in eukaryotes. Furthermore, in addition to being environmental reservoirs for known intracellular pathogens of humans and animals, protozoa may be sources of emerging pathogenic bacteria. It is thus critical to re-examine the relationship between bacteria and protozoa to further our understanding of current human bacterial pathogenesis and, possibly, to predict the appearance of emerging pathogens. [source]


Facts, fantasies and fun in epithelial physiology

EXPERIMENTAL PHYSIOLOGY, Issue 3 2008
C. A. R. Boyd
The hallmark of epithelial cells is their functional polarization. It is those membrane proteins that are distributed differentially, either to the apical or to the basal surface, that determine epithelial physiology. Such proteins will include ,pumps', ,channels' and ,carriers', and it is the functional interplay between the actions of these molecules that allows the specific properties of the epithelium to emerge. Epithelial properties will additionally depend on: (a) the extent to which there may be a route between adjacent cells (the ,paracellular' route); and (b) the folding of the epithelium (as, for example, in the loop of Henle). As for other transporters, there is polarized distribution of amino-acid carriers; the molecular basis of these is of considerable current interest with regard to function, including ,inborn errors' (amino-acidurias); some of these transporters have additional functions, such as in the regulation of cell fusion, in modulating cell adherence and in activating intracellular signalling pathways. Collaboration of physiologists with fly geneticists has generated new insights into epithelial function. One example is the finding that certain amino-acid transporters may act as ,transceptors' and play a role as sensors of the extracellular environment that then regulate intracellular pathways controlling cell growth. [source]


A novel 2D-based approach to the discovery of candidate substrates for the metalloendopeptidase meprin

FEBS JOURNAL, Issue 18 2008
Daniel Ambort
In the past, protease-substrate finding proved to be rather haphazard and was executed by in vitro cleavage assays using singly selected targets. In the present study, we report the first protease proteomic approach applied to meprin, an astacin-like metalloendopeptidase, to determine physiological substrates in a cell-based system of Madin,Darby canine kidney epithelial cells. A simple 2D IEF/SDS/PAGE-based image analysis procedure was designed to find candidate substrates in conditioned media of Madin,Darby canine kidney cells expressing meprin in zymogen or in active form. The method enabled the discovery of hitherto unkown meprin substrates with shortened (non-trypsin-generated) N- and C-terminally truncated cleavage products in peptide fragments upon LC-MS/MS analysis. Of 22 (17 nonredundant) candidate substrates identified, the proteolytic processing of vinculin, lysyl oxidase, collagen type V and annexin A1 was analysed by means of immunoblotting validation experiments. The classification of substrates into functional groups may propose new functions for meprins in the regulation of cell homeostasis and the extracellular environment, and in innate immunity, respectively. [source]


Calcium modulates endopeptidase 24.15 (EC 3.4.24.15) membrane association, secondary structure and substrate specificity

FEBS JOURNAL, Issue 12 2005
Vitor Oliveira
The metalloendopeptidase 24.15 (EP24.15) is ubiquitously present in the extracellular environment as a secreted protein. Outside the cell, this enzyme degrades several neuropeptides containing from 5 to 17 amino acids (e.g. gonadotropin releasing hormone, bradykinin, opioids and neurotensin). The constitutive secretion of EP24.15 from glioma C6 cells was demonstrated to be stimulated linearly by reduced concentrations of extracellular calcium. In the present report we demonstrate that extracellular calcium concentration has no effect on the total amount of the extracellular (cell associated + medium) enzyme. Indeed, immuno-cytochemical analyses by confocal and electron microscopy suggested that the absence of calcium favors the enzyme shedding from the plasma membrane into the medium. Two putative calcium-binding sites on EP24.15 (D93 and D159) were altered by site-directed mutagenesis to investigate their possible contribution to binding of the enzyme at the cell surface. These mutated recombinant proteins behave similarly to the wild-type enzyme regarding enzymatic activity, secondary structure, calcium sensitivity and immunoreactivity. However, immunocytochemical analyses by confocal microscopy consistently show a reduced ability of the D93A mutant to associate with the plasma membrane of glioma C6 cells when compared with the wild-type enzyme. These data and the model of the enzyme's structure as determined by X-ray diffraction suggest that D93 is located at the enzyme surface and is consistent with membrane association of EP24.15. Moreover, calcium was also observed to induce a major change in the EP24.15 cleavage site on distinctive fluorogenic substrates. These data suggest that calcium may be an important modulator of ep24.15 cell function. [source]


Pgt1, a glutathione transporter from the fission yeast Schizosaccharomyces pombe

FEMS YEAST RESEARCH, Issue 6 2008
Anil Thakur
Abstract The Schizosaccharomyces pombe ORF, SPAC29B12.10c, a predicted member of the oligopeptide transporter (OPT) family, was identified as a gene encoding the S. pombe glutathione transporter (Pgt1) by a genetic strategy that exploited the requirement of the cys1a, strain of S. pombe (which is defective in cysteine biosynthesis) for either cysteine or glutathione, for growth. Disruption of the ORF in the cys1a, strain led to an inability to grow on glutathione as a source of cysteine. Cloning and subsequent biochemical characterization of the ORF revealed that a high-affinity transporter for glutathione (Km=63 ,M) that was found to be localized to the plasma membrane. The transporter was specific for glutathione, as significant inhibition in glutathione uptake could be observed only by either reduced or oxidized glutathione, or glutathione conjugates, but not by dipeptides or tripeptides. Furthermore, although glu,cys,gly, an analogue of glutathione (,-glu,cys,gly), could be utilized as a sulphur source, the growth was not Pgt1 dependent. This further underlined the specificity of this transporter for glutathione. The strong repression of pgt1+ expression by cysteine suggested a role in scavenging glutathione from the extracellular environment for the maintenance of sulphur homeostasis in this yeast. [source]


Delivery of Nucleic Acids via Disulfide-Based Carrier Systems

ADVANCED MATERIALS, Issue 32-33 2009
Sonja Bauhuber
Abstract Nucleic acids are not only expected to assume a pivotal position as "drugs" in the treatment of genetic and acquired diseases, but could also act as molecular cues to control the microenvironment during tissue regeneration. Despite this promise, the efficient delivery of nucleic acids to their side of action is still the major hurdle. One among many prerequisites for a successful carrier system for nucleic acids is high stability in the extracellular environment, accompanied by an efficient release of the cargo in the intracellular compartment. A promising strategy to create such an interactive delivery system is to exploit the redox gradient between the extra- and intracellular compartments. In this review, emphasis is placed on the biological rationale for the synthesis of redox sensitive, disulfide-based carrier systems, as well as the extra- and intracellular processing of macromolecules containing disulfide bonds. Moreover, the basic synthetic approaches for introducing disulfide bonds into carrier molecules, together with examples that demonstrate the benefit of disulfides at the individual stages of nucleic acid delivery, will be presented. [source]


Cold-adapted signal proteins: NMR structures of pheromones from the antarctic ciliate Euplotes nobilii

IUBMB LIFE, Issue 8-9 2007
William J. Placzek
Abstract Cell type-specific signal proteins, known as pheromones, are synthesized by ciliated protozoa in association with their self/nonself mating-type systems, and are utilized to control the vegetative growth and mating stages of their life cycle. In species of the most ubiquitous ciliate, Euplotes, these pheromones form families of structurally homologous molecules, which are constitutively secreted into the extracellular environment, from where they can be isolated in sufficient amounts for chemical characterization. This paper describes the NMR structures of En-1 and En-2, which are members of the cold-adapted pheromone family produced by Euplotes nobilii, a species inhabiting the freezing coastal waters of Antarctica. The structures were determined with the proteins from the natural source, using homonuclear 1H NMR techniques in combination with automated NOESY peak picking and NOE assignment. En-1 and En-2 have highly homologous global folds, which consist of a central three-,-helix bundle with an up-down-up topology and a 310-helical turn near the N-terminus. This fold is stabilized by four disulfide bonds and the helices are connected by bulging loops. Apparent structural specificity resides in the variable C-terminal regions of the pheromones. The NMR structures of En-1 and En-2 provide novel insights into the cold-adaptive modifications that distinguish the E. nobilii pheromone family from the closely related E. raikovi pheromone family isolated from temperate waters. [source]


Aging and lung injury repair: A role for bone marrow derived mesenchymal stem cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2008
Ana L. Mora
Abstract The incidence of lung fibrosis increases with age. Aging is associated with modifications in the intracellular and extracellular environment including alteration of the extracellular matrix, imbalance of the redox state, accumulation of senescent cells and potential alteration of the recruitment of bone marrow mesenchymal stem cells. The combination of these senescence-related alterations in the lung and in bone marrow progenitor cells might be responsible of the higher susceptibility to lung fibrosis in elderly individuals. The understanding of these age related changes must be considered in the rationale for the development of therapeutic interventions to control lung injury and fibrosis. J. Cell. Biochem. 105: 641,647, 2008. © 2008 Wiley-Liss, Inc. [source]


Inorganic phosphate as a signaling molecule in osteoblast differentiation,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2003
George R. Beck Jr.
Abstract The spatial and temporal coordination of the many events required for osteogenic cells to create a mineralized matrix are only partially understood. The complexity of this process, and the nature of the final product, demand that these cells have mechanisms to carefully monitor events in the extracellular environment and have the ability to respond through cellular and molecular changes. The generation of inorganic phosphate during the process of differentiation may be one such signal. In addition to the requirement of inorganic phosphate as a component of hydroxyapatite mineral, Ca10(PO4)6(OH)2, a number of studies have also suggested it is required in the events preceding mineralization. However, contrasting results, physiological relevance, and the lack of a clear mechanism(s) have created some debate as to the significance of elevated phosphate in the differentiation process. More recently, a number of studies have begun to shed light on possible cellular and molecular consequences of elevated intracellular inorganic phosphate. These results suggest a model in which the generation of inorganic phosphate during osteoblast differentiation may in and of itself represent a signal capable of facilitating the temporal coordination of expression and regulation of multiple factors necessary for mineralization. The regulation of protein function and gene expression by elevated inorganic phosphate during osteoblast differentiation may represent a mechanism by which mineralizing cells monitor and respond to the changing extracellular environment. J. Cell. Biochem. 90: 234,243, 2003. Published 2003 Wiley-Liss, Inc. [source]


Expression of GFAT1 and OGT in podocytes: Transport of glucosamine and the implications for glucose uptake into these cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010
Dorota Rogacka
Glutamine:fructose-6-phosphate amidotransferase (GFAT) and N -acetylglucosaminyltransferase (OGT) participate in glucosamine (GlcN) production and its utilization in O -glycosylation, one of key post-translational modifications of nuclear and cytoplasmic proteins. For this purpose, cells require a high rate of intracellular production of GlcN and/or significant GlcN delivery. We studied the expression of GFAT1 and OGT and measured uptake of glucose and GlcN in cultured rat podocytes, the main cellular component of glomerular filtration barrier. RT-PCR revealed the presence of both GFAT1 and OGT mRNA. Immunofluorescence of GFAT1 has shown staining signal diffused within the cytoplasm of the cell body and processes. However, OGT was distinctly visible around the nucleus and, in diffuse form, within the cytoplasm of cell bodies and processes. Glucose was transported (1.3,±,0.2,nmol/min/mg protein) mainly by facilitative transporter systems whilst GlcN uptake (1.1,±,0.2,nmol/min/mg protein) in a significant part, involved a sodium-dependent transporter. There was interplay between glucose and GlcN uptake. In the presence of GlcN (50,µM), the rate of glucose uptake decreased by about 50%. The rate of GlcN uptake decreased by 28% in the presence of 5.6,mM glucose. Our results suggest that cultured podocytes possess limited ability to synthesize GlcN internally and therefore may need to receive GlcN from the extracellular environment. J. Cell. Physiol. 225: 577,584, 2010. © 2010 Wiley-Liss, Inc. [source]


Continuous requirement for pp60-Src and phospho-paxillin during fibronectin matrix assembly by transformed cells

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007
Iwona Wierzbicka-Patynowski
Fibronectin (FN) matrix assembly is an integrin-mediated process that is regulated by both the extracellular environment and intracellular signaling pathways. The activity of Src-family kinases is important for initiation of FN assembly by normal fibroblasts. Here we report that in HT1080 fibrosarcoma cells, Src kinase activity is required not only for the assembly of FN matrix but also for the maintenance of FN matrix fibrils at the cell surface. Dexamethasone-induced FN fibril formation by these cells was completely blocked for at least 24 h when Src-family kinase activity was inhibited by either PP1 or SU6656. Inhibition of Src after significant matrix had already been assembled, resulted in an increased rate of loss of detergent-insoluble FN. Binding of activation-dependent integrin antibodies reveals a role for Src in maintaining integrin activity. The requirement for Src kinase activity appears to depend, in part, on phosphorylation of paxillin at tyrosine 118 (Y118). Phospho-paxillin co-localized with FN fibrils, and overexpression of GFP-paxillin but not of GFP-paxillinY118F enhanced cell-mediated assembly of FN. Our results indicate that Src maintains FN matrix at the cell surface through its effect on integrin activity and paxillin phosphorylation. J. Cell. Physiol. 210: 750,756, 2007. © 2006 Wiley-Liss, Inc. [source]


Insulin-like growth factor (IGF) binding protein-3 regulation of IGF-I is altered in an acidic extracellular environment

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2001
Kimberly E. Forsten
While extracellular acidification within solid tumors is well-documented, how reduced pH impacts regulation of insulin-like growth factor-I (IGF-I) has not been studied extensively. Because IGF-I receptor binding is affected by IGF binding proteins (IGFBPs), we examined how pH impacted IGFBP-3 regulation of IGF-I. IGF-I binding in the absence of IGFBP-3 was diminished at reduced pH. Addition of IGFBP-3 reduced IGF-I cell binding at pH 7.4 but increased surface association at pH 5.8. This increase in IGF-I binding at pH 5.8 corresponded with an increase in IGFBP-3 cell association. This, however, was not due to an increase in affinity of IGFBP-3 for heparin at reduced pH although both heparinase III treatment and heparin addition reduced IGFBP-3 enhancement of IGF-I binding. An increase in IGF-I binding to IGFBP-3, though, was seen at reduced pH using a cell-free assay. We hypothesize that the enhanced binding of IGF-I at pH 5.8 is facilitated by increased association of IGFBP-3 at this pH and that the resulting cell associated IGF-I is IGFBP-3 and not IGF-IR bound. Increased internalization and nuclear association of IGF-I at pH 5.8 in the presence of IGFBP-3 was evident, yet cell proliferation was reduced by IGFBP-3 at both pH 5.8 and 7.4 indicating that IGFBP-3-cell associated IGF-I does not signal the cell to proliferate and that the resulting transfer of bound IGF-I from IGF-IR to IGFBP-3 results in diminished proliferation. Solution binding of IGF-I by IGFBP-3 is one means by which IGF-I-induced proliferation is inhibited. Our work suggests that an alternative pathway exists by which IGF-I and IGFBP-3 both associate with the cell surface and that this association inhibits IGF-I-induced proliferation. © 2001 Wiley-Liss, Inc. [source]


Abnormal post-translational and extracellular processing of brevican in plaque-bearing mice over-expressing APPsw

JOURNAL OF NEUROCHEMISTRY, Issue 3 2010
Joanne M. Ajmo
J. Neurochem. (2010) 113, 784,795. Abstract Aggregation of amyloid-, (A,) in the forebrain of Alzheimer's disease (AD) subjects may disturb the molecular organization of the extracellular microenvironment that modulates neural and synaptic plasticity. Proteoglycans are major components of this extracellular environment. To test the hypothesis that A,, or another amyloid precursor protein (APP) dependent mechanism modifies the accumulation and/or turnover of extracellular proteoglycans, we examined whether the expression and processing of brevican, an abundant extracellular, chondroitin sulfate (CS)-bearing proteoglycan, were altered in brains of A,-depositing transgenic mice (APPsw , APP gene bearing the Swedish mutation) as a model of AD. The molecular size of CS chains attached to brevican was smaller in hippocampal tissue from APPsw mice bearing A, deposits compared to non-transgenic mice, likely because of changes in the CS chains. Also, the abundance of the major proteolytic fragment of brevican was markedly diminished in extracts from several telencephalic regions of APPsw mice compared to non-transgenic mice, yet these immunoreactive fragments appeared to accumulate adjacent to the plaque edge. These results suggest that A, or APP exert inhibitory effects on proteolytic cleavage mechanisms responsible for synthesis and turnover of proteoglycans. As proteoglycans stabilize synaptic structure and inhibit molecular plasticity, defective brevican processing observed in A,-bearing mice and potentially end-stage human AD, may contribute to deficient neural plasticity. [source]


BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation

JOURNAL OF NEUROCHEMISTRY, Issue 1 2008
Yinghui Hu
Abstract It is clear that brain-derived neurotrophic factor (BDNF) plays a crucial role in organizing the response of the genome to dynamic changes in the extracellular environment that enable brain plasticity. BDNF has emerged as one of the most important signaling molecules for the developing nervous system as well as the impaired nervous system, and multiple diseases, such as Alzheimer's, Parkinson's, Huntington's, epilepsy, Rett's syndrome, and psychiatric depression, are linked by their association with potential dysregulation of BDNF-driven signal transduction programs. These programs are responsible for controlling the amount of activated transcription factors, such as cAMP response element binding protein, that coordinate the expression of multiple brain proteins, like ion channels and early growth response factors, whose job is to maintain the balance of excitation and inhibition in the nervous system. In this review, we will explore the evidence for BDNF's role in gene regulation side by side with its potential role in the etiology of neurological diseases. It is hoped that by bringing the datasets together in these diverse fields we can help develop the foundation for future studies aimed at understanding basic principles of gene regulation in the nervous system and how they can be harnessed to develop new therapeutic opportunities. [source]


Role of the nitric oxide/cyclic GMP pathway and extracellular environment in the nitric oxide donor-induced increase in dopamine secretion from PC12 cells: a microdialysis in vitro study

JOURNAL OF NEUROCHEMISTRY, Issue 6 2003
Pier Andrea Serra
Abstract In vitro microdialysis was used to investigate the mechanism of nitric oxide (NO) donor-induced changes in dopamine (DA) secretion from PC12 cells. Infusion of the NO-donor S-nitroso- N -acetylpenicillamine (SNAP, 1.0 mm) induced a long-lasting increase in DA and 3-methoxytyramine (3-MT) dialysate concentrations. SNAP-induced increases were inhibited either by pre-infusion of the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4] oxadiazolo[4,3]quinoxalin-1-one (ODQ, 0.1 mm) or by Ca2+ omission. Ca2+ re-introduction restored SNAP effects. SNAP-induced increases in DA + 3-MT were unaffected by co-infusion of the l -type Ca2+ channel inhibitor nifedipine. The NO-donor (+/,)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3, 1.0 mm) induced a short-lasting decrease in dialysate DA + 3-MT. Ascorbic acid (0.2 mm) co-infusion allowed NOR-3 to increase dialysate DA + 3-MT. ODQ pre-infusion inhibited NOR-3 + ascorbic acid-induced DA + 3-MT increases. Infusion of high K+ (75 mm) induced a 2.5-fold increase in dialysate DA + 3-MT. The increase was abolished by NOR-3 co-infusion. Conversely, co-infusion of ascorbic acid (0.2 mm) with NOR-3 + high K+ restored high K+ effects. Co-infusion of nifedipine inhibited high K+ -induced DA + 3-MT increases. These results suggest that activation of the NO/sGC/cyclic GMP pathway may be the underlying mechanism of extracellular Ca2+ -dependent effects of exogenous NO on DA secretion from PC12 cells. Extracellular Ca2+ entry may occur through nifedipine-insensitive channels. NO effects and DA concentrations in dialysates largely depend on both the timing of NO generation and the extracellular environment in which NO is generated. [source]


Structure,Activity Relationships Among N -Arachidonylethanolamine (Anandamide) Head Group Analogues for the Anandamide Transporter

JOURNAL OF NEUROCHEMISTRY, Issue 6 2000
Abbas Jarrahian
Abstract: Two putative endocannabinoids, N -arachidonylethanolamine (AEA) and 2-arachidonylglycerol, are inactivated by removal from the extracellular environment by a process that has the features of protein-mediated facilitated diffusion. We have synthesized and studied 22 N-linked analogues of arachidonylamide for the purpose of increasing our understanding of the structural requirements for the binding of ligands to the AEA transporter. We have also determined the affinities of these analogues for both the CB1 cannabinoid receptor and fatty acid amide hydrolase (FAAH). We have identified several structural features that enhance binding to the AEA transporter in cerebellar granule cells. We have confirmed the findings of others that replacing the ethanolamine head group with 4-hydroxybenzyl results in a high-affinity ligand for the transporter. However, we find that the same molecule is also a competitive inhibitor of FAAH. Similarly, replacement of the ethanolamine of AEA with 3-pyridinyl also results in a high-affinity inhibitor of both the transporter and FAAH. We conclude that the structural requirements for ligand binding to the CB1 receptor and binding to the transporter are very different; however, the transporter and FAAH share most, but not all, structural requirements. [source]


Homeostasis of neuroactive amino acids in cultured cerebellar and neocortical neurons is influenced by environmental cues

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1-2 2005
Helle Waagepetersen
Abstract Neuronal function is highly influenced by the extracellular environment. To study the effect of the milieu on neurons from cerebellum and neocortex, cells from these brain areas were cultured under different conditions. Two sets of cultures, one neocortical and one cerebellar neurons, were maintained in media containing [U- 13C]glucose for 8 days at initial concentrations of 12 and 28 mM glucose, respectively. Other sets of cultures (8 days in vitro) maintained in a medium containing initially 12 mM glucose were incubated subsequently for 4 hr either by addition of [U- 13C]glucose to the culture medium (final concentration 3 mM) or by changing to fresh medium containing [U- 13C]glucose (3 mM) but without glutamine and fetal calf serum. 13C Nuclear magnetic resonance (NMR) spectra revealed extensive ,-aminobutyric acid (GABA) synthesis in both cultured neocortical and cerebellar neurons after maintenance in medium containing [U- 13C]glucose for 8 days, whereas no aspartate labeling was observed in these spectra. Mass spectrometry analysis, however, revealed high labeling intensity of aspartate, which was equal in the two types of neurons. Addition of [U- 13C]glucose (4 hr) on Day 8 in culture led to a similar extent of labeling of GABA in neocortical and in cerebellar cultures, but the cellular content of GABA was considerably higher in the neocortical neurons. The cellular content of alanine was similar regardless of culture type. Comparing the amount of labeling, however, cerebellar neurons exhibited a higher capacity for alanine synthesis. This is compatible with the fact that cerebellar neurons could ameliorate a low alanine content after culturing in low glucose (12 mM) by a 4-hr incubation in medium containing 3 mM glucose. A low glucose concentration during the culture period and a subsequent medium change were associated with decreases in glutathione and taurine contents. Moreover, glutamate and GABA contents were reduced in cerebellar cultures under either of these conditions. In neocortical neurons, the GABA content was decreased by simultaneous exposure to low glucose and change of medium. These conditions also led to an increase in the aspartate content in both types of cultures, although most pronounced in the neocortical neurons. Further experiments are needed to elucidate these phenomena that underline the impact of extracellular environment on amino acid homeostasis. © 2004 Wiley-Liss, Inc. [source]


The integrin family of cell adhesion molecules has multiple functions within the CNS

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2002
Richard Milner
Abstract Integrins comprise a large family of cell adhesion molecules that mediate interactions between the extracellular environment and the cytoplasm. During the last decade, analysis of the expression and function of these molecules has revealed that integrins regulate many aspects of cell behavior including cell death, proliferation, migration, and differentiation. Within the central nervous system (CNS), most of the early studies focused on the role of integrins in mediating adhesive and migratory events in two distinct processes: neural development and CNS inflammation. Interestingly, recent analysis of transgenic mice has provided some surprising results regarding the role of integrins in neural development. Furthermore, a large body of evidence now supports the idea that in addition to these well-described functions, integrins play multiple roles in the CNS, both during development and in the adult in areas as diverse as synaptogenesis, activation of microglia, and stabilization of the endothelium and blood-brain barrier. Many excellent reviews have addressed the contribution of integrins in mediating leukocyte extravasation during CNS inflammation. This review will focus on recently emerging evidence of novel and diverse roles of integrins and their ligands in the CNS during development and in the adult, in health and disease. © 2002 Wiley-Liss, Inc. [source]


Effect of minimal processing on the textural and structural properties of fresh-cut pears

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 14 2002
Robert C Soliva-Fortuny
Abstract The feasibility of minimal processing and modified atmosphere packaging to preserve the original textural quality of fresh-cut pears was evaluated throughout storage under refrigeration. Fresh-cut pear firmness could be extended up to several weeks with low-O2 atmospheres. A packaging atmosphere of 100% N2 combined with the use of plastic bags with an O2 permeability of 15,cm3,m,2 bar,1,day,1 maintained cell structure and partially avoided membrane breakdown and exudate accumulation in intercellular spaces. Under the other conditions studied, pear texture underwent dramatic deterioration, which could be related to complete inundation of the extracellular environment. Firmness decreased linearly throughout the storage period studied, with rate constants ranging from 0.0097 to 0.040 day,1. The consideration of other textural variables also gave valuable information, similar to that provided by firmness data. © 2002 Society of Chemical Industry [source]


The glycosylphosphatidylinositol (GPI) biosynthetic pathway of bloodstream-form Trypanosoma brucei is dependent on the de novo synthesis of inositol

MOLECULAR MICROBIOLOGY, Issue 1 2006
Kirstee L. Martin
Summary In bloodstream-form Trypanosoma brucei (the causative agent of African sleeping sickness) the glycosylphosphatidylinositol (GPI) anchor biosynthetic pathway has been validated genetically and chemically as a drug target. The conundrum that GPI anchors could not be in vivo labelled with [3H]-inositol led us to hypothesize that de novo synthesis was responsible for supplying myo -inositol for phosphatidylinositol (PI) destined for GPI synthesis. The rate-limiting step of the de novo synthesis is the isomerization of glucose 6-phosphate to 1- d -myo -inositol-3-phosphate, catalysed by a 1- d -myo -inositol-3-phosphate synthase (INO1). When grown under non-permissive conditions, a conditional double knockout demonstrated that INO1 is an essential gene in bloodstream-form T. brucei. It also showed that the de novo synthesized myo -inositol is utilized to form PI, which is preferentially used in GPI biosynthesis. We also show for the first time that extracellular myo- inositol can in fact be used in GPI formation although to a limited extent. Despite this, extracellular inositol cannot compensate for the deletion of INO1. Supporting these results, there was no change in PI levels in the conditional double knockout cells grown under non-permissive conditions, showing that perturbation of growth is due to a specific lack of de novo synthesized myo -inositol and not a general inositol-less death. These results suggest that there is a distinction between de novo synthesized myo -inositol and that from the extracellular environment. [source]


Ni2+ induces changes in the morphology of vacuoles, mitochondria and microtubules in Paxillus involutus cells

NEW PHYTOLOGIST, Issue 4 2006
Sandra Tuszy
Summary ,,Organelles of ectomycorrhizal fungi are known to respond to changes in the extracellular environment. The response of vacuoles, mitochondria and microtubules to short-term nickel (Ni2+) exposure were investigated in hyphal tip cells of a Paxillus involutus from a heavy metal-rich soil. ,,Vacuoles, mitochondria and microtubules were labelled with Oregon Green® 488 carboxylic acid diacetate, 3,3,-dihexyloxacarbocyanine iodide (DiOC6(3)) and anti-,-tubulin antibodies, respectively; hyphae were treated with NiSO4 in the range of 0,1 mmol l,1 and examined microscopically. ,,Untreated hyphal tip cells contained tubular vacuole and mitochondrial networks. Ni2+ caused loss of organelle tubularity and severe microtubule disruption that were exposure-time and concentration dependent. Fine tubular vacuoles thickened and eventually became spherical in some hyphae, tubular mitochondria fragmented and microtubules shortened and aggregated into patches in most hyphae. Tubular vacuoles reformed on NiSO4 removal and tubular mitochondria in the presence of NiSO4 suggesting cellular detoxification. ,,These results demonstrate that Ni2+ induces changes in organelle and microtubule morphology. Recovery of tubular organelles to pretreatment morphology after Ni2+ exposure suggests cellular detoxification of the metal ion. [source]


Making sense of cilia in disease: The human ciliopathies,

AMERICAN JOURNAL OF MEDICAL GENETICS, Issue 4 2009
Kate Baker
Abstract Ubiquitous in nature, cilia and flagella comprise nearly identical structures with similar functions. The most obvious example of the latter is motility: driving movement of the organism or particle flow across the epithelial surface in fixed structures. In vertebrates, such motile cilia are evident in the respiratory epithelia, ependyma, and oviducts. For over a century, non-motile cilia have been observed on the surface of most vertebrate cells but until recently their function has eluded us. Gathering evidence now points to critical roles for the mono-cilium in sensing the extracellular environment, and perturbation of this function gives rise to a predictable panoply of clinical problems. We review the common clinical phenotypes associated with ciliopathies and interrogate Online Mendelian Inheritance in Man (OMIM) to compile a comprehensive list of putative disorders in which ciliary dysfunction may play a role. © 2009 Wiley-Liss, Inc. [source]


1141154113 Expression of natural cytotoxicity receptors in peripheral blood NK cell subsets of women with recurrent spontaneous abortions (RSA) or implantation failures

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 6 2006
A Fukui
Problem:, Natural Cytotoxicity Receptors (NCRs) are unique markers of NK cells and regulate NK cell cytotoxicity and cytokine production. a2V-ATPase is expressed in the cell membrane and can regulate the pH of the extracellular environment, which might facilitate NK cell killing or cytokine secretion. In this preliminary study we evaluated the expression of NCRs and a2V-ATPase in peripheral blood NK cells of women with RSA or implantation (IVF-ET) failures. Method of Study:, Peripheral blood was obtained from women with RSA (n = 10), or IVF-ET failures (n = 9). CD56dim and CD56bright NK cells were analyzed for the expression of NCRs (NKp46, NKp44 and NKp30) and a2V-ATPase using flow cytometry. Results:, For women with RSA, there were significant differences in the expression of NKp46 between CD56dim (36.9 ± 30.2) and CD56bright (76.0 ± 27.5) (P < 0.01), of NKp30 between CD56dim (30.9 ± 25.7) and CD56bright (55.8 ± 29.5) (P < 0.01), and of a2V-ATPase between CD56dim (1.0 ± 0.9) and CD56bright (23.2 ± 15.1) (P < 0.01) NK cells. For women with IVF-ET failures, there were significant differences in the expression of NKp46 between CD56dim (39.5 ± 21.5) and CD56bright (78.8 ± 26.0) (P < 0.01), of NKp30 between CD56dim (27.2 ± 17.9) and CD56bright (45.2 ± 29.8) (P < 0.05), and of a2V-ATPase between CD56dim (1.6 ± 1.4) and CD56bright (21.2 ± 16.5) (P < 0.01) NK cells. Conclusions:, The differential expression of NCRs and a2V-ATPase in NK cell subsets of women with RSA and IVF-ET failures may have an effect in cytotoxicity and cytokine production. Additional studies are currently in effect to evaluate these activities. We suggest that the analysis of NCRs and a2V-ATPase expression in peripheral blood NK cell subsets may contribute to a better understanding in the biology of NK cells in women with RSA or IVF-ET failures. [source]


Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis?

ANNALS OF NEUROLOGY, Issue 6 2007
Edor Kabashi PhD
The identification in 1993 of superoxide dismutase-1 (SOD1) mutations as the cause of 10 to 20% of familial amyotrophic lateral sclerosis cases, which represents 1 to 2% of all amyotrophic lateral sclerosis (ALS) cases, prompted a substantial amount of research into the mechanisms of SOD1-mediated toxicity. Recent experiments have demonstrated that oxidation of wild-type SOD1 leads to its misfolding, causing it to gain many of the same toxic properties as mutant SOD1. In vitro studies of oxidized/misfolded SOD1 and in vivo studies of misfolded SOD1 have indicated that these protein species are selectively toxic to motor neurons, suggesting that oxidized/misfolded SOD1 could lead to ALS even in individuals who do not carry an SOD1 mutation. It has also been reported that glial cells secrete oxidized/misfolded mutant SOD1 to the extracellular environment, where it can trigger the selective death of motor neurons, offering a possible explanation for the noncell autonomous nature of mutant SOD1 toxicity and the rapid progression of disease once the first symptoms develop. Therefore, considering that sporadic (SALS) and familial ALS (FALS) cases are clinically indistinguishable, the toxic properties of mutated SOD1 are similar to that of oxidized/misfolded wild-type SOD1 (wtSOD1), and secreted/extracellular misfolded SOD1 is selectively toxic to motor neurons, we propose that oxidized/misfolded SOD1 is the cause of most forms of classic ALS and should be a prime target for the design of ALS treatments. Ann Neurol 2007 [source]


Use of an in-house approach to study the three-dimensional structures of various outer membrane proteins: structure of the alcaligin outer membrane transporter FauA from Bordetella pertussis

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2009
Karl Brillet
Bordetella pertussis is the bacterial agent of whooping cough in humans. Under iron-limiting conditions, it produces the siderophore alcaligin. Released to the extracellular environment, alcaligin chelates iron, which is then taken up as a ferric alcaligin complex via the FauA outer membrane transporter. FauA belongs to a family of TonB-dependent outer membrane transporters that function using energy derived from the proton motive force. Using an in-house protocol for membrane-protein expression, purification and crystallization, FauA was crystallized in its apo form together with three other TonB-dependent transporters from different organisms. Here, the protocol used to study FauA is described and its three-dimensional structure determined at 2.3,Å resolution is discussed. [source]


Control of Cell Volume in Skeletal Muscle

BIOLOGICAL REVIEWS, Issue 1 2009
Juliet A. Usher-Smith
Abstract Regulation of cell volume is a fundamental property of all animal cells and is of particular importance in skeletal muscle where exercise is associated with a wide range of cellular changes that would be expected to influence cell volume. These complex electrical, metabolic and osmotic changes, however, make rigorous study of the consequences of individual factors on muscle volume difficult despite their likely importance during exercise. Recent charge-difference modelling of cell volume distinguishes three major aspects to processes underlying cell volume control: (i) determination by intracellular impermeant solute; (ii) maintenance by metabolically dependent processes directly balancing passive solute and water fluxes that would otherwise cause cell swelling under the influence of intracellular membrane-impermeant solutes; and (iii) volume regulation often involving reversible short-term transmembrane solute transport processes correcting cell volumes towards their normal baselines in response to imposed discrete perturbations. This review covers, in turn, the main predictions from such quantitative analysis and the experimental consequences of comparable alterations in extracellular pH, lactate concentration, membrane potential and extracellular tonicity. The effects of such alterations in the extracellular environment in resting amphibian muscles are then used to reproduce the intracellular changes that occur in each case in exercising muscle. The relative contributions of these various factors to the control of cell volume in resting and exercising skeletal muscle are thus described. [source]


Cell Population Modeling and Parameter Estimation for Continuous Cultures of Saccharomyces cerevisiae

BIOTECHNOLOGY PROGRESS, Issue 5 2002
Prashant Mhaskar
Saccharomyces cerevisiae is known to exhibit sustained oscillations in chemostats operated under aerobic and glucose-limited growth conditions. The oscillations are reflected both in intracellular and extracellular measurements. Our recent work has shown that unstructured cell population balance models are capable of generating sustained oscillations over an experimentally meaningful range of dilution rates. A disadvantage of such unstructured models is that they lack variables that can be compared directly to easily measured extracellular variables. Thus far, most of our work in model development has been aimed at achieving qualitative agreement with experimental data. In this paper, a segregated model with a simple structured description of the extracellular environment is developed and evaluated. The model accounts for the three most important metabolic pathways involved in cell growth with glucose substrate. As compared to completely unstructured models, the major advantage of the proposed model is that predictions of extracellular variables can be compared directly to experimental data. Consequently, the model structure is well suited for the application of estimation techniques aimed at determining unknown model parameters from available extracellular measurements. A steady-state parameter selection method developed in our group is extended to oscillatory dynamics to determine the parameters that can be estimated most reliably. The chosen parameters are estimated by solving a nonlinear programming problem formulated to minimize the difference between predictions and measurements of the extracellular variables. The efficiency of the parameter estimation scheme is demonstrated using simulated and experimental data. [source]


Extracellular and intracellular mechanisms that mediate the metastatic activity of exogenous osteopontin

CANCER, Issue 8 2009
Jami Mandelin PhD
Abstract BACKGROUND: Osteopontin affects several steps of the metastatic cascade. Despite direct correlation with metastasis in experimental systems and in patient studies, the extracellular and intracellular basis for these observations remains unsolved. In this study, the authors used human melanoma and sarcoma cell lines to evaluate the effects of soluble osteopontin on metastasis. METHODS: Exogenous osteopontin or negative controls, including a site-directed mutant osteopontin, were used in functional assays in vitro, ex vivo, and in vivo that were designed to test the extracellular and intracellular mechanisms involved in experimental metastasis. RESULTS: In the extracellular environment, the results confirmed that soluble osteopontin is required for its prometastatic effects; this phenomenon is specific, arginine-glycine-aspartic acid (RGD)-dependent, and evident in experimental models of metastasis. In the intracellular environment, osteopontin initially induced rapid tyrosine 418 (Tyr-418) dephosphorylation of the cellular homolog of the Rous sarcoma virus (c-Src), with decreases in actin stress fibers and increased binding to the vascular endothelium. This heretofore undescribed Tyr dephosphorylation was followed by a tandem c-Src phosphorylation after tumor cell attachment to the metastatic site. CONCLUSIONS: The results of this study revealed a complex molecular interaction as well as a dual role for osteopontin in metastasis that depends on whether tumor cells are in circulation or attached. Such context-dependent functional insights may contribute to antimetastasis strategies. Cancer 2009. © 2009 American Cancer Society. [source]