Extracellular Dopamine (extracellular + dopamine)

Distribution by Scientific Domains

Terms modified by Extracellular Dopamine

  • extracellular dopamine level

  • Selected Abstracts


    Comparison of the Effects of Deramciclane, Ritanserin and Buspirone on Extracellular Dopamine and Its Metabolites in Striatum and Nucleus Accumbens of Freely Moving Rats

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2008
    Tiina M. Kääriäinen
    Dual probe in vivo microdialysis in freely moving rats was used to compare the effects of graded doses of deramciclane fumarate (3, 10 and 30 mg/kg), 5-HT2A/C antagonist ritanserin (1 mg/kg) and a partial 5-HT1A agonist buspirone hydrochloride (5 mg/kg) on the extracellular levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in nucleus accumbens and striatum assayed by high performance liquid chromatography with electrochemical detection. The indirect dopamine agonist, D-amphetamine sulfate (2 mg/kg), was used as a positive control. Ritanserin, buspirone and deramciclane 3 and 10 mg/kg had no significant effects on the extracellular dopamine levels in either brain area but deramciclane 30 mg/kg significantly increased accumbal dopamine as well as DOPAC and HVA in both brain areas. As expected, the positive control D-amphetamine significantly increased both striatal and accumbal dopamine levels. The effects of buspirone or the highest deramciclane dose and D-amphetamine on DOPAC and HVA levels were opposite; buspirone and deramciclane increased while D-amphetamine decreased the metabolite levels in both brain areas. The results indicate that a single high dose of deramciclane has the neuroleptic- or buspirone-like effect, particularly in mesolimbic regions. There is at least a 5-fold margin between the anxiolytic and neuroleptic doses of deramciclane in the rat. [source]


    Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2007
    Maria Rosaria Melis
    Abstract The neuropeptide oxytocin (20,100 ng), induces penile erection when injected unilaterally into the caudal but not rostral mesencephalic ventral tegmental area (VTA) of male Sprague,Dawley rats. Such pro-erectile effect started 30 min after treatment and was abolished by the prior injection of d(CH2)5Tyr(Me)2 -Orn8 -vasotocin (1 µg), an oxytocin receptor antagonist injected into the same caudal ventral tegmental area or of haloperidol (1 µg), a dopamine receptor antagonist, injected either into the nucleus accumbens shell (NAs) or into the paraventricular nucleus of the hypothalamus (PVN) ipsilateral to the injected ventral tegmental area. Penile erection was seen 15 min after the occurrence of, or concomitantly to, an increase in extracellular dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the dialysate obtained from the nucleus accumbens or the paraventricular nucleus, which was also abolished by d(CH2)5Tyr(Me)2 -Orn8 -vasotocin (1 µg), injected into the ventral tegmental area before oxytocin. In the caudal ventral tegmental area oxytocin-containing axons/fibres (originating from the paraventricular nucleus) appeared to closely contact cell bodies of mesolimbic dopaminergic neurons retrogradely labelled with Fluorogold injected into the nucleus accumbens shell, suggesting that oxytocin effects are mediated by the activation of mesolimbic dopaminergic neurons, followed in turn by that of incerto-hypothalamic dopaminergic neurons impinging on oxytocinergic neurons mediating penile erection. As the stimulation of paraventricular dopamine receptors not only induces penile erection, but also increases mesolimbic dopamine neurotransmission by activating oxytocinergic neurons, these results provide further support for the existence of a neural circuit in which dopamine and oxytocin influence both the consummatory and motivational/rewarding aspects of sexual behaviour. [source]


    Distinct kinds of novelty processing differentially increase extracellular dopamine in different brain regions

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2006
    Elvira De Leonibus
    Abstract Behaviourally relevant novel stimuli are known to activate the mesocorticolimbic dopaminergic (DAergic) system. In this study we tested the reactivity of this system in response to distinct kinds of novelty processing. Using the in vivo microdialysis technique, we measured extracellular amounts of dopamine (DA) in different DAergic terminal regions during a social learning task in rats. In the first session (40 min) rats were exposed to two never previously encountered juveniles (i.e. unconditional novelty). Afterwards, the animals were divided into three groups: Control group was not exposed to any other stimulus; Discrimination group was exposed to one familiar and one new juvenile (i.e. novel stimulus discrimination); and Recognition group was re-exposed to the two familiar juveniles (i.e. familiarity recognition). In both the medial prefrontal cortex and the nucleus accumbens shell DA increased in response to the first presentation of the juveniles, showing that both structures are involved in processing unconditional social novelty. During the novel stimulus discrimination, we found no change in the prefrontal cortex, although DA increased in the accumbal shell in comparison with the group exposed to two familiar juveniles, showing that the shell is also involved in processing novel social stimulus discrimination. None of the stimuli presented affected DA in the accumbal core. This study provided the original evidence that DA in the various terminal regions is differentially coupled to distinct aspects of novelty processing. [source]


    In vivo characterization of the angiotensin-(1,7)-induced dopamine and ,-aminobutyric acid release in the striatum of the rat

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2005
    Bart Stragier
    Abstract The effect of angiotensin (Ang)-1,7 on dopamine, ,-aminobutyric acid (GABA) and glutamate release in the striatum of the rat was examined using in vivo microdialysis. Ang-(1,7) was administered locally in the striatum through the microdialysis probe. At a concentration of 100 µm, Ang-(1,7) caused a significant increase in extracellular dopamine and GABA but had no effect on glutamate release. The Ang-(1,7)-induced dopamine release was blocked by EC33, an inhibitor of aminopeptidase A, an enzyme which converts Ang-(1,7) into Ang-(3,7), suggesting that this effect occurs after metabolism into Ang-(3,7). Indeed, administration of Ang-(3,7) (10,100 µm) into the striatum caused a more potent increase in the striatal dopamine release than Ang-(1,7). Because Ang-(3,7) is an inhibitor of insulin-regulated aminopeptidase (IRAP) and because Ang IV, another IRAP inhibitor, also causes a concentration-dependent increase in dopamine in the rat striatum, IRAP may be involved in this effect. In contrast, EC33 had no effect on the Ang-(1,7)-induced GABA increase but the GABA release was blocked by the putative AT1-7 receptor antagonist A779 (0.1 µm) and by the nitric oxide synthase inhibitor L-NAME (1 mm). These drugs could not block the effect of Ang-(1,7) on the striatal dopamine release suggesting that only the observed effects on GABA release are mediated by the AT1-7 receptor and/or are associated with a release of nitric oxide. [source]


    C-type natriuretic peptide (CNP) regulates cocaine-induced dopamine increase and immediate early gene expression in rat brain

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2001
    Nathalie Thiriet
    Abstract The neuropeptide C-type natriuretic peptide (CNP) is the primary biologically active natriuretic peptide in brain. Using in situ hybridization, the present report demonstrates that CNP regulates egr-1, c-fos and junB immediate early gene expression in rat brain. In the frontal cortex, CNP induced immediate early gene expression whereas it inhibited dose-dependently the cocaine-induced early gene expression in the dopaminergic projection fields nucleus accumbens and caudate,putamen. CNP may produce its effect directly on dopaminergic neurons because we found that its receptor, guanylyl cyclase GC-B, was expressed in the mesencephalon where dopaminergic neurons originate, as well as in their projection fields. The inhibition by CNP of the early gene expression elicited by cocaine in the caudate,putamen is correlated with a CNP-evoked decrease in cocaine-induced rise in extracellular dopamine, measured by in vivo microdialysis experiments. The significance of the inhibition of cocaine-induced dopamine release and early gene induction by the endogenous peptide CNP is demonstrated by data indicating that CNP reduced the cocaine-induced spontaneous locomotor activation. By inhibiting dopaminergic neuronal activity, CNP represents a potential negative regulator of related behavioural effects of cocaine. [source]


    Involvement of the somatostatin-2 receptor in the anti-convulsant effect of angiotensin IV against pilocarpine-induced limbic seizures in rats

    JOURNAL OF NEUROCHEMISTRY, Issue 4 2006
    Bart Stragier
    Abstract The anti-convulsant properties of angiotensin IV (Ang IV), an inhibitor of insulin-regulated aminopeptidase (IRAP) and somatostatin-14, a substrate of IRAP, were evaluated in the acute pilocarpine rat seizure model. Simultaneously, the neurochemical changes in the hippocampus were monitored using in vivo microdialysis. Intracerebroventricularly (i.c.v.) administered Ang IV or somatostatin-14 caused a significant increase in the hippocampal extracellular dopamine and serotonin levels and protected rats against pilocarpine-induced seizures. These effects of Ang IV were both blocked by concomitant i.c.v. administration of the somatostatin receptor-2 antagonist cyanamid 154806. These results reveal a possible role for dopamine and serotonin in the anti-convulsant effect of Ang IV and somatostatin-14. Our study suggests that the ability of Ang IV to inhibit pilocarpine-induced convulsions is dependent on somatostatin receptor-2 activation, and is possibly mediated via the inhibition of IRAP resulting in an elevated concentration of somatostatin-14 in the brain. [source]


    Distinct effects of methamphetamine and cocaine on preprodynorphin messenger RNA in rat striatal patch and matrix

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2003
    David H. Adams
    Abstract We and others previously reported that equimolar doses of methamphetamine and cocaine differentially increase preprodynorphin mRNA in striatum: methamphetamine causes a patchy increase, whereas cocaine produces a more homogenous one. The current study directly examined whether this effect reflects differential induction in the patch,matrix division of striatum, as identified by µ opioid receptor immunohistochemistry. In addition, we determined whether doses of cocaine (30 mg/kg) and methamphetamine (2 mg/kg) that produced equivalent increases in extracellular dopamine differentially affected preprodynorphin mRNA expression in striatum of male, Sprague,Dawley rats. In both experiments, methamphetamine and cocaine differentially affected preprodynorphin mRNA in striatum after 3 h. The high, equimolar dose of methamphetamine selectively increased preprodynorphin mRNA in the patch division of rostral striatum, whereas cocaine increased preprodynorphin mRNA throughout patch and matrix divisions of striatum. In contrast, a dose of methamphetamine (2.0 mg/kg) that caused an increase in extracellular dopamine similar to that produced by 30 mg/kg cocaine did not significantly affect preprodynorphin mRNA in any region of striatum. These data provide further evidence that cocaine and amphetamines exert distinct effects on the patch,matrix division of striatum and suggest further that the post-synaptic consequences of elevated extracellular dopamine produced by methamphetamine and cocaine are distinct. [source]


    Region-specific effects of N,N,-dodecane-1,12-diyl-bis-3-picolinium dibromide on nicotine-induced increase in extracellular dopamine in vivo

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2008
    S Rahman
    Background and purpose: Systemic administration of N,N,-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), an antagonist of nicotinic acetylcholine receptors (nAChRs) attenuated the nicotine-induced increase in dopamine levels in nucleus accumbens (NAcc). Experimental approach: Using in vivo microdialysis, we investigated the effects of local perfusion of the novel nAChR antagonist bPiDDB into the NAcc or ventral tegmental area (VTA) on increased extracellular dopamine in NAcc, induced by systemic nicotine. We also examined the concentration-dependent effects of bPiDDB on the acetylcholine (ACh)-evoked response of specific recombinant neuronal nAChR subtypes expressed in Xenopus oocytes, using electrophysiological methods. Key results: Nicotine (0.4 mg kg,1, s.c.) increased extracellular dopamine in NAcc, which was attenuated by intra-VTA perfusion of mecamylamine (100 ,M). Intra-VTA perfusion of bPiDDB (1 and 10 ,M) reduced nicotine-induced increases in extracellular dopamine in NAcc. In contrast, intra-NAcc perfusion of bPiDDB (1 or 10 ,M) failed to alter the nicotine-induced increase in dopamine in NAcc. Intra-VTA perfusion of bPiDDB alone did not alter basal dopamine levels, compared to control, nor the increased dopamine in NAcc following amphetamine (0.5 mg kg,1, s.c.). Using Xenopus oocytes, bPiDDB (0.01,100 ,M) inhibited the response to ACh on specific combinations of rat neuronal nAChR subunits, with highest potency at ,3,4,3 and lowest potency at ,6/3,2,3. Conclusions and implications: bPiDDB-Sensitive nAChRs involved in regulating nicotine-induced dopamine release are located in the VTA, rather than in the NAcc. As bPiDDB has properties different from the prototypical nAChR antagonist mecamylamine, further development may lead to novel nAChR antagonists for the treatment of tobacco dependence. British Journal of Pharmacology (2008) 153, 792,804; doi:10.1038/sj.bjp.0707612; published online 3 December 2007 [source]