Extracellular DA (extracellular + da)

Distribution by Scientific Domains

Terms modified by Extracellular DA

  • extracellular da level

  • Selected Abstracts


    Synaptic release of dopamine in the subthalamic nucleus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2004
    Stephanie J. Cragg
    Abstract The direct modulation of subthalamic nucleus (STN) neurons by dopamine (DA) neurons of the substantia nigra (SN) is controversial owing to the thick caliber and low density of DA axons in the STN. The abnormal activity of the STN in Parkinson's disease (PD), which is central to the appearance of symptoms, is therefore thought to result from the loss of DA in the striatum. We carried out three experiments in rats to explore the function of DA in the STN: (i) light and electron microscopic analysis of tyrosine hydroxylase (TH)-, dopamine ,-hydroxylase (D,H)- and DA-immunoreactive structures to determine whether DA axons form synapses; (ii) fast-scan cyclic voltammetry (FCV) to determine whether DA axons release DA; and (iii) patch clamp recording to determine whether DA, at a concentration similar to that detected by FCV, can modulate activity and synaptic transmission/integration. TH- and DA-immunoreactive axons mostly formed symmetric synapses. Because D,H-immunoreactive axons were rare and formed asymmetric synapses, they comprised the minority of TH-immunoreactive synapses. Voltammetry demonstrated that DA release was sufficient for the activation of receptors and abolished by blockade of voltage-dependent Na+ channels or removal of extracellular Ca2+. The lifetime and concentration of extracellular DA was increased by blockade of the DA transporter. Dopamine application depolarized STN neurons, increased their frequency of activity and reduced the impact of ,-aminobutyric acid (GABA)-ergic inputs. These findings suggest that SN DA neurons directly modulate the activity of STN neurons and their loss may contribute to the abnormal activity of STN neurons in PD. [source]


    SK3 K+ channel-deficient mice have enhanced dopamine and serotonin release and altered emotional behaviors

    GENES, BRAIN AND BEHAVIOR, Issue 8 2008
    J. P. R. Jacobsen
    SK3 K+ channels influence neuronal excitability and are present in 5-hydroxytryptamine (5-HT) and dopamine (DA) nuclei in the brain stem. We therefore hypothesized that SK3 channels affect 5-HT and DA neurotransmission and associated behaviors. To explore this, we used doxycycline-induced conditional SK3-deficient (T/T) mice. In microdialysis, T/T mice had elevated baseline levels of striatal extracellular DA and the metabolites dihydroxyphenylacetic acid and homovanillic acid. While baseline hippocampal extracellular 5-HT was unchanged in T/T mice, the 5-HT response to the 5-HT transporter inhibitor citalopram was enhanced. Furthermore, baseline levels of the 5-HT metabolite 5-hydroxyindoleacetic acid were elevated in T/T mice. T/T mice performed equally to wild type (WT) in most sensory and motor tests, indicating that SK3 deficiency does not lead to gross impairments. In the forced swim and tail suspension tests, the T/T mice displayed reduced immobility compared with WT, indicative of an antidepressant-like phenotype. Female T/T mice were more anxious in the zero maze. In contrast, anxiety-like behaviors in the open-field and four-plate tests were unchanged in T/T mice of both sexes. Home cage diurnal activity was also unchanged in T/T mice. However, SK3 deficiency had a complex effect on activity responses to novelty: T/T mice showed decreased, increased or unchanged activity responses to novelty, depending on sex and context. In summary, we report that SK3 deficiency leads to enhanced DA and 5-HT neurotransmission accompanied by distinct alterations in emotional behaviors. [source]


    Brain dopamine is associated with eating behaviors in humans

    INTERNATIONAL JOURNAL OF EATING DISORDERS, Issue 2 2003
    Nora D. Volkow
    Abstract Objective Eating behavior in humans is influenced by variables other than just hunger-satiety including cognitive restraint, emotional distress, and sensitivity to food stimuli. We investigate the role of dopamine (DA), a neurotransmitter involved with food motivation, in these variables. Methods We used the Dutch Eating Behavior Questionnaire (DEBQ) to measure Restraint, Emotionality, and Externality in 10 subjects. We correlated DEBQ scores with brain DA levels. Positron emission tomography and {11C}raclopride uptake were used to measure baseline D2 receptors (neutral stimulation) and to assess changes in extracellular DA to food stimulation (display of food). Results Restraint was correlated with DA changes with food stimulation (higher restraint, greater responsivity), emotionality was negatively correlated with baseline D2 receptors (higher emotionality, lower D2 receptors), whereas externality was not. These correlations were significant in the dorsal but not in the ventral striatum. Discussion These results provide evidence that DA in the dorsal striatum is involved with the restraint and emotionality components regulating eating behavior and that these two dimensions reflect different neurobiologic processes. © 2003 by Wiley Periodicals, Inc.Int J Eat Disord 33: 136,142, 2003. [source]


    Repeated administration of the selective kappa-opioid receptor agonist U-69593 increases stimulated dopamine extracellular levels in the rat nucleus accumbens

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2006
    José Antonio Fuentealba
    Abstract Reinforcing properties of drugs of abuse are reduced by the coadministration of kappa opioid receptor (KOR) agonists. This effect is related to the inhibition of dopamine (DA) release in the nucleus accumbens (NAc) produced by the acute administration of KOR agonists. The present study was undertaken to investigate the in vivo effect of the repeated administration of KOR agonist on extracellular DA levels in the NAc. Rats were injected once daily with the selective KOR agonist U-69593 (0.16,0.32 mg/kg) or vehicle for 4 days. Microdialysis studies assessing extracellular concentration of DA in the NAc under basal and K+ -stimulatory conditions were conducted 1 day later. The microdialysis studies revealed that preexposure to U-69593 had no effect on basal extracellular DA levels but significantly augmented the amount of extracellular DA induced by high K+ compared with vehicle pretreated rats. The D2 receptor agonist quinpirole perfused through the dialysis probe in the NAc, although it produced a significant decrease on basal and K+ -stimulated DA levels in control rats, it did not decrease significantly either basal or K+ -stimulated DA levels in U-69593 preexposed rats. Preexposure to U-69593 did not alter the expression of tyrosine hydroxylase or dopamine transporter in the ventral tegmental area. These results show that repeated administration of U-696593 increases the amount of extracellular DA induced by high K in the NAc, an effect that may be related to decreased D2 autoreceptor function. It is suggested that repeated activation of KOR changes the response status of dopaminergic neurons in the NAc. © 2006 Wiley-Liss, Inc. [source]


    A Single, Moderate Ethanol Exposure Alters Extracellular Dopamine Levels and Dopamine D2 Receptor Function in the Nucleus Accumbens of Wistar Rats

    ALCOHOLISM, Issue 10 2009
    Kelle M. Franklin
    Background:, The nucleus accumbens (NAc) has been implicated in the neurochemical effects of ethanol (EtOH). Evidence suggests that repeated EtOH exposures and chronic EtOH drinking increase dopamine (DA) neurotransmission in the NAc due, in part, to a reduction in D2 autoreceptor function. The objectives of the current study were to evaluate the effects of a single EtOH pretreatment and repeated EtOH pretreatments on DA neurotransmission and D2 autoreceptor function in the NAc of Wistar rats. Methods:, Experiment 1 examined D2 receptor function after a single intraperitoneal (i.p.) injection or repeated i.p. injections of 0.0, 0.5, 1.0, or 2.0 g/kg EtOH to female Wistar rats. Single EtOH pretreatment groups received 1 daily i.p. injection of 0.9% NaCl (saline) for 4 days, followed by 1 day of saline or EtOH administration; repeated EtOH pretreatment groups received 5 days of saline or EtOH injections. Reverse microdialysis experiments were conducted to determine the effects of local perfusion with the D2 -like receptor antagonist (-)sulpiride (SUL; 100 uM), on extracellular DA levels in the NAc. Experiment 2 evaluated if pretreatment with a single, moderate (1.0 g/kg) dose of EtOH would alter levels and clearance of extracellular DA in the NAc, as measured by no-net-flux (NNF) microdialysis. Subjects were divided into the EtOH-naïve and the single EtOH pretreated groups from Experiment 1. Results:, Experiment 1: Changes in extracellular DA levels induced with SUL perfusion were altered by the EtOH dose (p < 0.001), but not the number of EtOH pretreatments (p > 0.05). Post-hoc analyses indicated that groups pretreated with single or repeated 1.0 g/kg EtOH showed significantly attenuated DA response to SUL, compared with all other groups (p < 0.001). Experiment 2: Multiple linear regression analyses yielded significantly (p < 0.05) higher extracellular DA concentrations in the NAc of rats receiving EtOH pretreatment, compared with their EtOH-naïve counterparts (3.96 ± 0.42 nM and 3.25 ± 0.23 nM, respectively). Extraction fractions were not significantly different between the 2 groups. Conclusions:, The present results indicate that a single EtOH pretreatment at a moderate dose can increase DA neurotransmission in the NAc due, in part, to reduced D2 autoreceptor function. [source]