Extracellular Ca2+ Entry (extracellular + ca2+_entry)

Distribution by Scientific Domains


Selected Abstracts


Role of the nitric oxide/cyclic GMP pathway and extracellular environment in the nitric oxide donor-induced increase in dopamine secretion from PC12 cells: a microdialysis in vitro study

JOURNAL OF NEUROCHEMISTRY, Issue 6 2003
Pier Andrea Serra
Abstract In vitro microdialysis was used to investigate the mechanism of nitric oxide (NO) donor-induced changes in dopamine (DA) secretion from PC12 cells. Infusion of the NO-donor S-nitroso- N -acetylpenicillamine (SNAP, 1.0 mm) induced a long-lasting increase in DA and 3-methoxytyramine (3-MT) dialysate concentrations. SNAP-induced increases were inhibited either by pre-infusion of the soluble guanylate cyclase (sGC) inhibitor 1H-[1,2,4] oxadiazolo[4,3]quinoxalin-1-one (ODQ, 0.1 mm) or by Ca2+ omission. Ca2+ re-introduction restored SNAP effects. SNAP-induced increases in DA + 3-MT were unaffected by co-infusion of the l -type Ca2+ channel inhibitor nifedipine. The NO-donor (+/,)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide (NOR-3, 1.0 mm) induced a short-lasting decrease in dialysate DA + 3-MT. Ascorbic acid (0.2 mm) co-infusion allowed NOR-3 to increase dialysate DA + 3-MT. ODQ pre-infusion inhibited NOR-3 + ascorbic acid-induced DA + 3-MT increases. Infusion of high K+ (75 mm) induced a 2.5-fold increase in dialysate DA + 3-MT. The increase was abolished by NOR-3 co-infusion. Conversely, co-infusion of ascorbic acid (0.2 mm) with NOR-3 + high K+ restored high K+ effects. Co-infusion of nifedipine inhibited high K+ -induced DA + 3-MT increases. These results suggest that activation of the NO/sGC/cyclic GMP pathway may be the underlying mechanism of extracellular Ca2+ -dependent effects of exogenous NO on DA secretion from PC12 cells. Extracellular Ca2+ entry may occur through nifedipine-insensitive channels. NO effects and DA concentrations in dialysates largely depend on both the timing of NO generation and the extracellular environment in which NO is generated. [source]


Acute atrial arrhythmogenesis in murine hearts following enhanced extracellular Ca2+ entry depends on intracellular Ca2+ stores

ACTA PHYSIOLOGICA, Issue 2 2010
Y. Zhang
Abstract Aim:, To investigate the effect of increases in extracellular Ca2+ entry produced by the L-type Ca2+ channel agonist FPL-64176 (FPL) upon acute atrial arrhythmogenesis in intact Langendorff-perfused mouse hearts and its dependence upon diastolic Ca2+ release from sarcoplasmic reticular Ca2+ stores. Methods:, Confocal microscope studies of Fluo-3 fluorescence in isolated atrial myocytes were performed in parallel with electrophysiological examination of Langendorff-perfused mouse hearts. Results:, Atrial myocytes stimulated at 1 Hz and exposed to FPL (0.1 ,m) initially showed (<10 min) frequent, often multiple, diastolic peaks following the evoked Ca2+ transients whose amplitudes remained close to control values. With continued pacing (>10 min) this reverted to a regular pattern of evoked transients with increased amplitudes but in which diastolic peaks were absent. Higher FPL concentrations (1.0 ,m) produced sustained and irregular patterns of cytosolic Ca2+ activity, independent of pacing. Nifedipine (0.5 ,m), and caffeine (1.0 mm) and cyclopiazonic acid (CPA) (0.15 ,m) pre-treatments respectively produced immediate and gradual reductions in the F/F0 peaks. Such nifedipine and caffeine, or CPA pre-treatments, abolished, or reduced, the effects of 0.1 and 1.0 ,m FPL on cytosolic Ca2+ signals. FPL (1.0 ,m) increased the incidence of atrial tachycardia and fibrillation in intact Langendorff-perfused hearts without altering atrial effective refractory periods. These effects were inhibited by nifedipine and caffeine, and reduced by CPA. Conclusion:, Enhanced extracellular Ca2+ entry exerts acute atrial arrhythmogenic effects that is nevertheless dependent upon diastolic Ca2+ release. These findings complement reports that associate established, chronic, atrial arrhythmogenesis with decreased overall inward Ca2+ current. [source]


Dihydropyridine- and voltage-sensitive Ca2+ entry in human parathyroid cells

EXPERIMENTAL PHYSIOLOGY, Issue 7 2009
Keitaro Yokoyama
Patch-clamp and fluorescence measurements of cytoplasmic Ca2+ concentration ([Ca2+]i) were performed to directly detect extracellular Ca2+ entry into cultured parathyroid cells from patients with secondary hyperparathyroidism. Cells loaded with fluo-3 AM or fluo-4 AM showed a transient increase in fluorescence (Ca2+ transient) following 10 s exposure to 150 mm K+ solution in the presence of millimolar concentrations of external Ca2+. The Ca2+ transient was completely inactivated after 30,40 s exposure to the high-K+ solution, was reduced by dihydropyridine antagonists and was enhanced by FPL-64176, an L-type Ca2+ channel agonist. The electrophysiological and pharmacological properties of the whole-cell Ca2+ and Ba2+ currents were similar to those of L-type Ca2+ channels. The Ca2+ transients induced by 10 s exposure to 3.0 mm extracellular Ca2+ concentration ([Ca2+]o) were inhibited by dihydropyridine antagonists and were partly inactivated following 30,40 s exposure to the high-K+ solution. These results demonstrate, for the first time, that human parathyroid cells express L-type-like Ca2+ channels that are possibly involved in the [Ca2+]o -induced change in [Ca2+]i. This Ca2+ entry system might provide a compensatory pathway for the negative feedback regulation of parathyroid hormone secretion, especially in hyperplastic conditions in which the Ca2+ -sensing receptor is poorly expressed. [source]