External pH (external + ph)

Distribution by Scientific Domains


Selected Abstracts


Impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH by Sclerotinia sclerotiorum

FEMS MICROBIOLOGY LETTERS, Issue 1 2007
Bryan J. Culbertson
Abstract Sclerotinia sclerotiorum D-E7 was studied to determine the impact of nutritional supplements and monosaccharides on growth, oxalate accumulation, and culture pH in broth media (initial pH c. 5). Cultures with 0.1% nutritional supplement (tryptone, yeast extract, or soytone) yielded minimal growth, 2,3 mM oxalate, and a final culture pH of 4.2,4.8. In contrast, cultures with 0.1% nutritional supplement and 25 mM glucose yielded significant growth, minimal oxalate (<1 mM), and a final culture pH of 2.8,3.7. Similar trends were observed when glucose in 0.1% soytone cultures was replaced with 25 mM d -mannose, l -arabinose, or d -xylose. With 1% soytone-25 mM glucose cultures, growth and oxalate accumulation (,21 mM) occurred with little change in initial pH. This was not the case with 1% soytone-250 mM glucose cultures; increased glucose levels resulted in a decrease in oxalate accumulation (,7 mM) and in final culture pH (3.4). Time-course studies with these cultures revealed that oxalate accumulation was suppressed during growth when the culture pH dropped to <4. Overall, these results indicate that (1) the decrease in external pH (i.e. acidification) was independent of oxalate accumulation and (2) acidification coupled to glucose-dependent growth regulated oxalate accumulation by Sclerotinia sclerotiorum. [source]


Acidosis Impairs the Protective Role of hERG K+ Channels Against Premature Stimulation

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2010
B.Sc., CHUN YUN DU M.B.
Acidosis and the hERG K+ Channel.,Introduction: Potassium channels encoded by human ether-à-go-go-related gene (hERG) underlie the cardiac rapid delayed rectifier K+ channel current (IKr). Acidosis occurs in a number of pathological situations and modulates a range of ionic currents including IKr. The aim of this study was to characterize effects of extracellular acidosis on hERG current (IhERG), with particular reference to quantifying effects on IhERG elicited by physiological waveforms and upon the protective role afforded by hERG against premature depolarizing stimuli. Methods and Results: IhERG recordings were made from hERG-expressing Chinese Hamster Ovary cells using whole-cell patch-clamp at 37°C. IhERG during action potential (AP) waveforms was rapidly suppressed by reducing external pH from 7.4 to 6.3. Peak repolarizing current and steady state IhERG activation were shifted by ,+6 mV; maximal IhERG conductance was reduced. The voltage-dependence of IhERG inactivation was little-altered. Fast and slow time-constants of IhERG deactivation were smaller across a range of voltages at pH 6.3 than at pH 7.4, and the contribution of fast deactivation increased. A modest acceleration of the time-course of recovery of IhERG from inactivation was observed, but time-course of activation was unaffected. The amplitude of outward IhERG transients elicited by premature stimuli following an AP command was significantly decreased at lower pH. Computer simulations showed that after AP repolarization a subthreshold stimulus at pH 7.4 could evoke an AP at pH 6.3. Conclusion: During acidosis the contribution of IhERG to action potential repolarization is reduced and hERG may be less effective in counteracting proarrhythmogenic depolarizing stimuli. (J Cardiovasc Electrophysiol, Vol. 21, pp. 1160-1169) [source]


Respiration of steelhead trout sperm: sensitivity to pH and carbon dioxide

JOURNAL OF FISH BIOLOGY, Issue 1 2003
R. L. Ingermann
Steelhead trout Oncorhynchus mykiss sperm held in seminal plasma or sperm-immobilizing buffer (pH 8·6) at 10° C consumed O2 at the rate of c. 2 nmol O2 min,1 10,9 sperm; the rate of O2 consumption was not different in sperm held for 4 or 24 h. Decreasing the extracellular pH from 8·5 to 7·5 either by diluting semen with buffer titrated with HCl or by increasing the partial pressure of CO2 in the incubation atmosphere resulted in c. a 40% decrease in the rate of sperm respiration. The data did not, however, support the hypothesis that the precipitous reduction in the capacity for sperm motility that occurs as external pH is reduced is a result of a decrease in cellular metabolism. The rate of O2 consumption of freshly collected semen from different males was not correlated to cellular ATP content or to the proportion of sperm that were motile upon activation; the initial ATP content and sperm motility were positively correlated. The rate of O2 consumption was not significantly increased following sperm activation or by the addition of an uncoupler of oxidative phosphorylation, carbonyl cyanide p -trifluoromethoxyphenylhydrazone, suggesting that these sperm have little, if any, capacity for increased oxidative metabolism. [source]


The transcriptional response to alkaline pH in Saccharomyces cerevisiae: evidence for calcium-mediated signalling

MOLECULAR MICROBIOLOGY, Issue 5 2002
Raquel Serrano
Summary The short-time transcriptional response of yeast cells to a mild increase in external pH (7.6) has been investigated using DNA microarrays. A total of 150 genes increased their mRNA level at least twofold within 45 min. Alkalinization resulted in the repression of 232 genes. The response of four upregulated genes, ENA1 (encoding a Na+ -ATPase also induced by saline stress) and PHO84, PHO89 and PHO12 (encoding genes upregulated by phosphate starvation), was characterized further. The alkaline response of ENA1 was not affected by mutation of relevant genes involved in osmotic or oxidative signalling, but was decreased in calcineurin and rim101 mutants. Mapping of the ENA1 promoter revealed two pH-responsive regions. The response of the upstream region was fully abolished by the drug FK506 or mutation of CRZ1 (a transcription factor activated by calcium/calcineurin), whereas the response of the downstream region was essentially calcium independent. PHO84 and PHO12 responses were unaffected in crz1 cells, but required the presence of Pho2 and Pho4. In contrast, part of the alkali-induced expression of PHO89 was maintained in pho4 or pho2 cells, but was fully abolished in a crz1 strain or in the presence of FK506. Heterologous promoters carrying the minimal calcineurin-dependent response elements found in ENA1 or FKS2 were able to drive alkaline pH-induced expression. These results demonstrate that the transcriptional response to alkaline pH involves different signalling mechanisms, and that calcium signalling is a relevant component of this response. [source]


Effect of external pH on the growth, photosynthesis and photosynthetic electron transport of Chlamydomonas acidophila Negoro, isolated from an extremely acidic lake (pH 2.6)

PLANT CELL & ENVIRONMENT, Issue 10 2005
ANTJE GERLOFF-ELIAS
ABSTRACT In extremely acidic lakes, low primary production rates have been measured. We assumed that proton stress might explain these observations and therefore investigated the photosynthetic behaviour of a Chlamydomonas species, a main primary producer in acidic lakes, over a range of pH values. Identified as C. acidophila using small subunit rDNA analysis, this species is identical to other isolates from acidic environments in Europe and South America, suggesting a worldwide distribution. Laboratory experiments with C. acidophila, revealed a broad pH-tolerance for growth and photosynthesis, the lower pH limit lying at pH 1.5 and the upper limit at pH 7. Growth rates at optimum pH conditions (pH 3 and 5) were equal to those of the mesophilic Chlamydomonas reinhardtii. In contrast, photosynthetic rates were significantly higher, suggesting that higher photosynthetic rates compensated for higher dark respiration rates, as confirmed experimentally. Electron transport capacities of PSI and PSII, P700+ re-reduction times and measurements of PSII fluorescence revealed the induction of alternative electron transport mechanisms, such as chlororespiration, state transitions and cyclic electron transport, only at suboptimal pH values (pH 1.5; 4 and 6,7). The results indicate, that C. acidophila is well adapted to low pH and that the relatively low primary production rates are not a result of pH stress. [source]


Fractional contribution of major ions to the membrane potential of Drosophila melanogaster oocytes

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 4 2009
Susan M. Munley
Abstract In ovarian follicles of Drosophila melanogaster, ion substitution experiments revealed that K+ is the greatest contributor (68%) in setting oocyte steady-state potential (Em), while Mg2+ and a metabolic component account for the rest. Because of the intense use made of Drosophila ovarian follicles in many lines of research, it is important to know how changes in the surrounding medium, particularly in major diffusible ions, may affect the physiology of the cells. The contributions made to the Drosophila oocyte membrane potential (Em) by [Na+]o, [K+]o, [Mg2+]o, [Ca2+]o, [Cl,]o, and pH (protons) were determined by substitutions made to the composition of the incubation medium. Only K+ and Mg2+ were found to participate in setting the level of Em. In follicles subjected to changes in external pH from the normal 7.3 to either pH 6 or pH 8, Em changed rapidly by about 6,mV, but within 8,min had returned to the original Em. Approximately half of all follicles exposed to reduced [Cl,]o showed no change in Em, and these all had input resistances of 330,k, or greater. The remaining follicles had smaller input resistances, and these first depolarized by about 5,mV. Over several minutes, their input resistances increased and they repolarized to a value more electronegative than their value prior to reduction in [Cl,]o. Together, K+ and Mg2+ accounted for up to 87% of measured steady-state potential. Treatment with sodium azide, ammonium vanadate, or chilling revealed a metabolically driven component that could account for the remaining 13%. © 2009 Wiley Periodicals, Inc. [source]