External Granular Layer (external + granular_layer)

Distribution by Scientific Domains


Selected Abstracts


The expression of Scratch genes in the developing and adult brain

DEVELOPMENTAL DYNAMICS, Issue 9 2006
Faustino Marín
Abstract The Scratch genes belong to the Snail superfamily of zinc-finger transcription factors present in the metazoa, represented in mammals by the Scratch1 and Scratch2 genes. We have analyzed the expression of these genes in the brain of mice at developmental stages between 9.5 days-post-coitum to adulthood. Both genes are expressed in the mantle layer of the neuroepithelium at mid-gestational stages in all regions except for the region corresponding to the V2 interneuron column, which lacked Scratch2 transcripts. From perinatal to adult stages, the expression patterns of the two genes differ. Scratch1 remains strongly expressed in almost all brain regions, although it is not found in some ventral structures such as motor nuclei and hypothalamic regions. In contrast, Scratch2 expression progressively diminishes and virtually no expression can be detected in the adult brain. Nevertheless, strong expression of Scratch2 is retained in the postnatal cortical subventricular zone, in the inner part of the cerebellar external granular layer, and in the glial cells of the adult vomeronasal nerve. Developmental Dynamoics 235:2586,2591, 2006. © 2006 Wiley-Liss, Inc. [source]


In vivo analysis reveals different apoptotic pathways in pre- and postmigratory cerebellar granule cells of rabbit

DEVELOPMENTAL NEUROBIOLOGY, Issue 4 2004
Laura Lossi
Abstract Naturally occurring neuronal death (NOND) has been described in the postnatal cerebellum of several species, mainly affecting the cerebellar granule cells (CGCs) by an apoptotic mechanism. However, little is known about the cellular pathway(s) of CGC apoptosis in vivo. By immunocytochemistry, in situ detection of fragmented DNA, electron microscopy, and Western blotting, we demonstrate here the existence of two different molecular mechanisms of apoptosis in the rabbit postnatal cerebellum. These two mechanisms affect CGCs at different stages of their maturation and migration. In the external granular layer, premigratory CGCs undergo apoptosis upon phosphorylation of checkpoint kinase 1 (Chk1), and hyperphosphorylation of retinoblastoma protein. In postmigratory CGCs within the internal granular layer, caspase 3 and to a lesser extent 7 and 9 are activated, eventually leading to poly-ADP-ribose polymerase-1 (PARP-1) cleavage and programmed cell death. We conclude that NOND of premigratory CGCs is linked to activation of DNA checkpoint and alteration of normal cell cycle, whereas in postmigratory CGCs apoptosis is, more classically, dependent upon caspase 3 activation. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 437,452, 2004 [source]


Distinct expression of C1q-like family mRNAs in mouse brain and biochemical characterization of their encoded proteins

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2010
Takatoshi Iijima
Abstract Many members of the C1q family, including complement C1q and adiponectin, and the structurally related tumor necrosis factor family are secreted and play crucial roles in intercellular signaling. Among them, the Cbln (precerebellin) and C1q-like (C1ql) subfamilies are highly and predominantly expressed in the central nervous system. Although the Cbln subfamily serve as essential trans-neuronal regulators of synaptic integrity in the cerebellum, the functions of the C1ql subfamily (C1ql1,C1ql4) remain unexplored. Here, we investigated the gene expression of the C1ql subfamily in the adult and developing mouse brain by reverse transcriptase-polymerase chain reaction and high-resolution in-situ hybridization. In the adult brain, C1ql1,C1ql3 mRNAs were mainly expressed in neurons but weak expression was seen in glia-like structures in the adult brain. The C1ql1 mRNA was predominantly expressed in the inferior olive, whereas the C1ql2 and C1ql3 mRNAs were strongly coexpressed in the dentate gyrus. Although the C1ql1 and C1ql3 mRNAs were detectable as early as embryonic day 13, the C1ql2 mRNA was observed at later embryonic stages. The C1ql1 mRNA was also expressed transiently in the external granular layer of the cerebellum. Biochemical characterization in heterologous cells revealed that all of the C1ql subfamily proteins were secreted and they formed both homomeric and heteromeric complexes. They also formed hexameric and higher-order complexes via their N-terminal cysteine residues. These results suggest that, like Cbln, the C1ql subfamily has distinct spatial and temporal expression patterns and may play diverse roles by forming homomeric and heteromeric complexes in the central nervous system. [source]


Opioids intrinsically inhibit the genesis of mouse cerebellar granule neuron precursors in vitro: differential impact of , and , receptor activation on proliferation and neurite elongation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2000
Kurt F. Hauser
Abstract Although opioids are known to affect neurogenesis in vivo, it is uncertain the extent to which opioids directly or indirectly affect the proliferation, differentiation or death of neuronal precursors. To address these questions, the intrinsic role of the opioid system in neurogenesis was systematically explored in cerebellar external granular layer (EGL) neuronal precursors isolated from postnatal mice and maintained in vitro. Isolated neuronal precursors expressed proenkephalin-derived peptides, as well as specific , and ,, but negligible ,, opioid receptors. The developmental effects of opioids were highly selective. Morphine-induced , receptor activation inhibited DNA synthesis, while a preferential ,2 -receptor agonist ([d -Ala2]-deltorphin II) or Met-enkephalin, but not the ,1 agonist [d -Pen2, d -Pen5]-enkephalin, inhibited differentiation within the same neuronal population. If similar patterns occur in the developing cerebellum, spatiotemporal differences in endogenous , and , opioid ligand,receptor interactions may coordinate distinct aspects of granule neuron maturation. The data additionally suggest that perinatal exposure to opiate drugs of abuse directly interfere with cerebellar maturation by disrupting normal opioid signalling and inhibiting the proliferation of granule neuron precursors. [source]


Developmental change and function of chondroitin sulfate deposited around cerebellar Purkinje cells

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2005
Yumiko Shimazaki
Abstract Chondroitin sulfate is a long sulfated polysaccharide with enormous structural heterogeneity that binds with various proteins, such as growth factors, in a structure-dependent manner. In this study, we analyzed the expression of chondroitin sulfate in the postnatally developing cerebellar cortex by using three monoclonal antibodies against chondroitin sulfate, MO-225, 2H6, and CS-56, which recognize different structural domains in this polysaccharide. During the first postnatal week, the patterns of immunohistochemical staining made by these antibodies were quite similar, and the molecular layer, the granule cell layer, and Bergmann glial fibers in the external granular layer were densely stained. After postnatal day 12 (P12), the expression of 2H6 epitopes was down-regulated in the molecular layer, and the expression of CS-56 epitopes in this layer was also reduced after P16. On the other hand, the strong expression of MO-225 epitopes, GlcA(2S),1,3GalNAc(6S) (D unit)-containing structures, remained until adulthood. These chondroitin sulfate epitopes were observed around Purkinje cells, including cell soma and dendrites. Detailed immunohistochemical analysis suggested that chondroitin sulfate was deposited between Purkinje cell surfaces and the processes of Bergmann glia. Furthermore, the amount of pleiotrophin, a heparin-binding growth factor, in the cultured cerebellar slices was remarkably diminished after treatment with chondroitinase ABC or D unit-rich chondroitin sulfate. With the previous findings that pleiotrophin binds to D unit-rich chondroitin sulfate, we suggest that the D-type structure is important for the signaling of pleiotrophin, which plays roles in Purkinje cell,Bergmann glia interaction, and that the structural changes of chondroitin sulfate regulate this signaling pathway. © 2005 Wiley-Liss, Inc. [source]