Home About us Contact | |||
External Disturbances (external + disturbance)
Selected AbstractsProbing of Thin Slipping Films by Persistent External DisturbancesTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2007N. Alleborn Abstract This paper investigates the propagation of thickness disturbances on the free surface of a thin viscous liquid film on a solid substrate. On the free surface of the film the disturbances are induced by moving local external pressure perturbations acting on the surface. The analysis is performed by the Fourier-Laplace transform applied to the linearized perturbation equations for small amplitudes. The amplitude of the interface deflection caused by the disturbance, is reconstructed by the inverse Fourier-Laplace transform and numerically evaluated in the long time limit in long wave approximation. The proposed technique appears promising for probing the slip length of a thin film by recording its free surface response to a moving perturbation. On étudie dans cet article la propagation des perturbations d'épaisseur à la surface libre d'un film liquide visqueux sur un substrat solide. Sur la surface libre du film, les perturbations sont provoquées en déplaçant des perturbations de pression externes locales agissant sur la surface. L'analyse est effectuée par l'application de la transformée de Fourier-Laplace aux équations de perturbation linéarisées pour des petites amplitudes. L'amplitude de la déviation de surface causée par la perturbation est reconstruite par la transformée de Fourier-Laplace inverse et évaluée numériquement pour un temps très long par l'approximation des ondes longues. La technique proposée apparaît prometteuse pour sonder la longueur de glissement d'un film mince en enregistrant la réponse de sa surface libre à une perturbation mobile. [source] Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lakeFRESHWATER BIOLOGY, Issue 10 2008JENG-WEI TSAI Summary 1. We used high-frequency in situ dissolved oxygen measurements to investigate the seasonal variability and factors regulating metabolism in a subtropical alpine lake in Taiwan between May 2004 and October 2005, specifically exploring how the typhoon season (from June or July to October) affects lake metabolism. 2. Gross primary production (GPP) and ecosystem respiration (R) both peaked in early summer and mid-autumn but dropped during the typhoon season and winter. Yuan-Yang Lake is a net heterotrophic ecosystem (annual mean net ecosystem production ,39.6 ,mole O2 m,3). 3. Compared to the summer peaks, seasonal averages of GPP and R decreased by approximately 50% and 25%, respectively, during the typhoon season. Ecosystem respiration was more resistant to external disturbances than GPP and showed strong daily variation during typhoon seasons. 4. Changes in the quality and quantity of dissolved organic carbon controlled the temporal dynamics and metabolic regulation. External disturbances (typhoons) caused increased allochthony, increasing DOC and water colour and influencing lake metabolism. 5. Seasonal winter mixing and typhoon-induced water mixing in summer and autumn play a key role in determining the extent to which the lake is a seasonal carbon sink or source to the atmosphere. [source] Bifurcation and second-order work in geomaterialsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2007François Nicot Abstract In this paper, the ability of a material rate-independent system to evolve toward another mechanical state from an equilibrium configuration, with no change in the control parameters, is investigated. From a mechanical point of view, this means that the system can spontaneously develop kinetic energy with no external disturbance from an equilibrium state, which corresponds to a particular case of bifurcation. The existence of both conjugate incremental strain and stress such that the second-order work vanishes is established as a necessary and sufficient condition for the appearance of this bifurcation phenomenon. It is proved that this fundamental result is independent of the constitutive relation of the rate-independent material considered. Then the case of homogeneous loading paths is investigated, and, as an illustration, the subsequent results are applied to interpret the well-known liquefaction observed under isochoric triaxial loading conditions with loose granular materials. Copyright © 2006 John Wiley & Sons, Ltd. [source] Tracking for nonlinear plants with multiple unknown time-varying state delays using sliding mode with adaptationINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 13 2010Boris Mirkin Abstract In this paper, we develop a sliding mode model reference adaptive control (MRAC) scheme for a class of nonlinear dynamic systems with multiple time-varying state delays, which is robust with respect to unknown plant delays, to a nonlinear perturbation, and to an external disturbance with unknown bounds. An appropriate Lyapunov,Krasovskii-type functional is introduced to design the adaptation algorithms, and to prove stability. Copyright © 2009 John Wiley & Sons, Ltd. [source] Robust sliding mode design for uncertain stochastic systems based on H, control methodOPTIMAL CONTROL APPLICATIONS AND METHODS, Issue 2 2010Yugang Niu Abstract In this paper, the design problem of sliding mode control (SMC) is addressed for uncertain stochastic systems modeled by Itô differential equations. There exist the parameter uncertainties in both the state and input matrices, as well as the unmatched external disturbance. The key feature of this work is the integration of SMC method with H, technique such that the robust stochastic stability with a prescribed disturbance attenuation level , can be achieved. A sufficient condition for the existence of the desired sliding mode controller is obtained via linear matrix inequalities. The reachability of the specified sliding surface is proven. Finally, a numerical simulation example is presented to illustrate the proposed method. Copyright © 2009 John Wiley & Sons, Ltd. [source] Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroidesPLANT BIOLOGY, Issue 3 2009N. Wang Abstract Effects of clonal integration on land plants have been extensively studied, but little is known about the role in amphibious plants that expand from terrestrial to aquatic conditions. We simulated expansion from terrestrial to aquatic habitats in the amphibious stoloniferous alien invasive alligator weed (Alternanthera philoxeroides) by growing basal ramets of clonal fragments in soils connected (allowing integration) or disconnected (preventing integration) to the apical ramets of the same fragments submerged in water to a depth of 0, 5, 10 or 15 cm. Clonal integration significantly increased growth and clonal reproduction of the apical ramets, but decreased both of these characteristics in basal ramets. Consequently, integration did not affect the performance of whole clonal fragments. We propose that alligator weed possesses a double-edged mechanism during population expansion: apical ramets in aquatic habitats can increase growth through connected basal parts in terrestrial habitats; however, once stolon connections with apical ramets are lost by external disturbance, the basal ramets in terrestrial habitats increase stolon and ramet production for rapid spreading. This may contribute greatly to the invasiveness of alligator weed and also make it very adaptable to habitats with heavy disturbance and/or highly heterogeneous resource supply. [source] Bioinspired Ribbed Nanoneedles with Robust SuperhydrophobicityADVANCED FUNCTIONAL MATERIALS, Issue 4 2010Xi Yao Abstract The robustness of superhydrophobicity is a fundamental issue for the applications of water-repellent materials. Inspired by the hierarchical structures of water-strider legs, this work describes a new water-repellent material decorated with ribbed, conical nanoneedles, successfully achieved on the surface of copper and consisting of copper hydroxide nanoneedle arrays sculptured with nanogrooves. The behavior of water drops on an as-prepared surface under various external disturbances is investigated. It is shown in particular that squeezing and relaxing drops between two such surfaces leads to a fully reversible exploration of the solid surface by the liquid, which is distinct from other superhydrophobic surfaces. This unique character is attributed to the penetrating Cassie state that occurs at the ribbed, conical nanoneedles. The proprietary lateral nanogrooves can, not only vigorously support the enwrapped liquid-air interface when a force is applied to the drop, but also provide reliable contact lines for the easy de-pinning of the deformed interface when the force is released from the drop. The results confirm the exceptional ability of strider legs to repel water, and should help to further the design of robust water-repellent materials and miniaturized aquatic devices. [source] Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lakeFRESHWATER BIOLOGY, Issue 10 2008JENG-WEI TSAI Summary 1. We used high-frequency in situ dissolved oxygen measurements to investigate the seasonal variability and factors regulating metabolism in a subtropical alpine lake in Taiwan between May 2004 and October 2005, specifically exploring how the typhoon season (from June or July to October) affects lake metabolism. 2. Gross primary production (GPP) and ecosystem respiration (R) both peaked in early summer and mid-autumn but dropped during the typhoon season and winter. Yuan-Yang Lake is a net heterotrophic ecosystem (annual mean net ecosystem production ,39.6 ,mole O2 m,3). 3. Compared to the summer peaks, seasonal averages of GPP and R decreased by approximately 50% and 25%, respectively, during the typhoon season. Ecosystem respiration was more resistant to external disturbances than GPP and showed strong daily variation during typhoon seasons. 4. Changes in the quality and quantity of dissolved organic carbon controlled the temporal dynamics and metabolic regulation. External disturbances (typhoons) caused increased allochthony, increasing DOC and water colour and influencing lake metabolism. 5. Seasonal winter mixing and typhoon-induced water mixing in summer and autumn play a key role in determining the extent to which the lake is a seasonal carbon sink or source to the atmosphere. [source] Recent trend of the partial discharge measurement technique using the UHF electromagnetic wave detection methodIEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 5 2007Masayuki Hikita Member Abstract The ultra high frequency (UHF) electromagnetic wave detection method has been widely studied and used in partial discharge (PD) measurement and as a diagnostic technique for insulation performance in gas-insulated switchgears (GIS) and transformers. The UHF method has advantages such as high sensitivity, wide detection range and reduced external disturbances. On the other hand, there are still some issues to be solved in the UHF methods, such as a clear understanding of the propagation characteristics of electromagnetic waves arising from the structure of the equipment, optimization of antenna design, calibration of charge, etc. This article deals with the present status and future trend of the technology of this promising UHF method of PD measurement, together with recent activities and results from our laboratory. Copyright © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source] Neural network-based adaptive attitude tracking control for flexible spacecraft with unknown high-frequency gainINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 6 2010Qinglei Hu Abstract Adaptive control design using neural networks (a) is investigated for attitude tracking and vibration stabilization of a flexible spacecraft, which is operated at highly nonlinear dynamic regimes. The spacecraft considered consists of a rigid body and two flexible appendages, and it is assumed that the system parameters are unknown and the truncated model of the spacecraft has finite but arbitrary dimension as well, for the purpose of design. Based on this nonlinear model, the derivation of an adaptive control law using neural networks (NNs) is treated, when the dynamics of unstructured and state-dependent nonlinear function are completely unknown. A radial basis function network that is used here for synthesizing the controller and adaptive mechanisms is derived for adjusting the parameters of the network and estimating the unknown parameters. In this derivation, the Nussbaum gain technique is also employed to relax the sign assumption for the high-frequency gain for the neural adaptive control. Moreover, systematic design procedure is developed for the synthesis of adaptive NN tracking control with L2 -gain performance. The resulting closed-loop system is proven to be globally stable by Lyapunov's theory and the effect of the external disturbances and elastic vibrations on the tracking error can be attenuated to the prescribed level by appropriately choosing the design parameters. Numerical simulations are performed to show that attitude tracking control and vibration suppression are accomplished in spite of the presence of disturbance torque/parameter uncertainty. Copyright © 2009 John Wiley & Sons, Ltd. [source] Design of adaptive variable structure controllers for T,S fuzzy time-delay systemsINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 2 2010Tai-Zu Wu Abstract In this paper, the adaptive variable structure control problem is presented for Takagi,Sugeno (T,S) fuzzy time-delay systems with uncertainties and external disturbances. The fuzzy sliding surfaces for the T,S fuzzy time-delay system are proposed by using a Lyapunov function, and we design the adaptive variable structure controllers such that the global T,S fuzzy time-delay system confined on the fuzzy sliding surfaces is asymptotically stable. One example is given to illustrate the effectiveness of our proposed methods. Copyright © 2009 John Wiley & Sons, Ltd. [source] Passivity-based sliding mode control for nonlinear systemsINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 9 2008Ali J. Koshkouei Abstract Passivity with sliding mode control for a class of nonlinear systems with and without unknown parameters is considered in this paper. In fact, a method for deriving a nonlinear system with external disturbances to a passive system is considered. Then a passive sliding mode control is designed corresponding to a given storage function. The passivity property guarantees the system stability while sliding mode control techniques assures the robustness of the proposed controller. When the system includes unknown parameters, an appropriate updated law is obtained so that the new transformed system is passive. The passivation property of linear systems with sliding mode is also analysed. The linear and nonlinear theories are applied to a simple pendulum model and the gravity-flow/pipeline system, respectively. Copyright © 2008 John Wiley & Sons, Ltd. [source] Adaptive motion/force tracking control of holonomic constrained mechanical systems: a unified viewpointINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 5 2007Chian-Song Chiu Abstract This paper proposes a robust adaptive motion/force tracking controller for holonomic constrained mechanical systems with parametric uncertainties and disturbances. First, two types of well-known holonomic systems are reformulated as a unified control model. Based on the unified control model, an adaptive scheme is then developed in the presence of pure parametric uncertainty. The proposed controller guarantees asymptotic motion and force tracking without the need of extra conditions. Next, when considering external disturbances, control gains are designed by solving a linear matrix inequality (LMI) problem to achieve prescribed robust performance criterion. Indeed, arbitrary disturbance/parametric error attenuation with respect to both motion and force errors along with control input penalty are ensured in the L2 -gain sense. Finally, applications are carried out on a two-link constrained robot and two planar robots transporting a common object. Numerical simulation results show the expected performances. Copyright © 2006 John Wiley & Sons, Ltd. [source] Adaptive robust force control for vehicle active suspensionsINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 2 2004Supavut Chantranuwathana Abstract In this paper, the modular adaptive robust control (MARC) technique is applied to design the force loop controller of an electro-hydraulic active suspension system. A key advantage of this modular design approach lies in the fact that the adaptation algorithm can be designed for explicit estimation convergence. The effect of parameter adaptation on force tracking performance can be compensated and thus it is possible to guaranteed certain control performance. Experimental results from a quarter-car active suspension test rig show that when realistic external disturbances and measurement noises exist, the modular design achieves a better estimate than the non-modular ARC design. The improved estimation was found to result in control signals with slightly lower magnitude while maintaining similar tracking performance. Copyright © 2004 John Wiley & Sons, Ltd. [source] Adaptive tracking control for electrically-driven robots without overparametrizationINTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 2 2002Yeong-Chan Chang Abstract This paper addresses the motion tracking control of robot systems actuated by brushed direct current motors in the presence of parametric uncertainties and external disturbances. By using the integrator backstepping technique, two kinds of adaptive control schemes are developed: one requires the measurements of link position, link velocity and armature current for feedback and the other requires only the measurements of link position and armature current for feedback. The developed adaptive controllers guarantee that the resulting closed-loop system is locally stable, all the states and signals are bounded, and the tracking error can be made as small as possible. The attraction region can be not only arbitrarily preassigned but also explicitly constructed. The main novelty of the developed adaptive control laws is that the number of parameter estimates is exactly equal to the number of unknown parameters throughout the entire electromechanical system. Consequently, the phenomenon of overparametrization, a significant drawback of employing the integrator backstepping technique to treat the control of electrically driven robots in the previous literature, is eliminated in this study. Finally, simulation examples are given to illustrate the tracking performance of electrically driven robot manipulators with the developed adaptive control schemes. Copyright © 2002 John Wiley & Sons, Ltd. [source] Consensus problem of high-order multi-agent systems with external disturbances: An H, analysis approachINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 14 2010Yang Liu Abstract This paper is devoted to the output consensus problem of directed networks of multiple high-order agents with external disturbances, and proposes a distributed protocol using the neighbors' measured outputs. By defining an appropriate controlled output and conducting a model transformation in two steps, consensus performance analysis of the multi-agent system under the proposed protocol is transformed into a normal H, problem. Then using H, theory of linear systems, conditions are derived to ensure the consensus performance with a prescribed H, index for networks with fixed and switching topologies, respectively. A numerical example of the formation control application is included to validate the theoretical results. Copyright © 2009 John Wiley & Sons, Ltd. [source] Iteration domain H, -optimal iterative learning controller designINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 10 2008Kevin L. Moore Abstract This paper presents an H, -based design technique for the synthesis of higher-order iterative learning controllers (ILCs) for plants subject to iteration-domain input/output disturbances and plant model uncertainty. Formulating the higher-order ILC problem into a high-dimensional multivariable discrete-time system framework, it is shown how the addition of input/output disturbances and plant model uncertainty to the ILC problem can be cast as an H, -norm minimization problem. The distinctive feature of this formulation is to consider the uncertainty as arising in the iteration domain rather than the time domain. An algebraic approach to solving the problem in this framework is presented, resulting in a sub-optimal controller that can achieve both stability and robust performance. The key observation is that H, synthesis can be used for higher-order ILC design to achieve a reliable performance in the presence of iteration-varying external disturbances and model uncertainty. Copyright © 2007 John Wiley & Sons, Ltd. [source] Robust tracking control for a class of MIMO nonlinear systems with measurable output feedbackINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 1 2008Ya-Jun Pan Abstract This paper proposes a robust output feedback controller for a class of nonlinear systems to track a desired trajectory. Our main goal is to ensure the global input-to-state stability (ISS) property of the tracking error nonlinear dynamics with respect to the unknown structural system uncertainties and external disturbances. Our approach consists of constructing a nonlinear observer to reconstruct the unavailable states, and then designing a discontinuous controller using a back-stepping like design procedure to ensure the ISS property. The observer design is realized through state transformation and there is only one parameter to be determined. Through solving a Hamilton,Jacoby inequality, the nonlinear control law for the first subsystem specifies a nonlinear switching surface. By virtue of nonlinear control for the first subsystem, the resulting sliding manifold in the sliding phase possesses the desired ISS property and to certain extent the optimality. Associated with the new switching surface, the sliding mode control is applied to the second subsystem to accomplish the tracking task. As a result, the tracking error is bounded and the ISS property of the whole system can be ensured while the internal stability is also achieved. Finally, an example is presented to show the effectiveness of the proposed scheme. Copyright © 2007 John Wiley & Sons, Ltd. [source] Explicit robust model predictive control using recursive closed-loop predictionINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 11 2006Danlei Chu Abstract In this paper, we develop an algorithm to compute robust MPC explicit solutions for constrained MIMO systems with internal uncertainties and external disturbances. Our approach is based on a recursive closed-loop prediction strategy to realize a finite horizon robust MPC regulator, which has the feature that only one-step state prediction is sufficient to realize robust MPC with an arbitrary prediction horizon. The paper defines a set of recursive sub-optimization problems as multiple-parametric sub-quadratic programming (mp-SQP), and shows that the optimal solution to the mp-SQP problem is piecewise affine functions of states, associated with piece objectives and state critical regions. Asymptotic closed-loop stability can be guaranteed by a terminal weighting and a terminal feedback gain; also by introducing two tuning variables, the algorithm is capable of adjusting the trade-off between system performance and robustness. The state admissible set, which is not easily derived from physical vision, is constructed by two methods: a piecewise linear norm of signals, and polyhedral Voronoi sets. Finally, two simulation examples demonstrate that the algorithm is efficient, feasible and flexible, and can be applied to both slow and fast industrial MIMO systems. Copyright © 2006 John Wiley & Sons, Ltd. [source] Inverse filtering and deconvolutionINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 2 2001Ali Saberi Abstract This paper studies the so-called inverse filtering and deconvolution problem from different angles. To start with, both exact and almost deconvolution problems are formulated, and the necessary and sufficient conditions for their solvability are investigated. Exact and almost deconvolution problems seek filters that can estimate the unknown inputs of the given plant or system either exactly or almostly whatever may be the unintended or disturbance inputs such as measurement noise, external disturbances, and model uncertainties that act on the system. As such they require strong solvability conditions. To alleviate this, several optimal and suboptimal deconvolution problems are formulated and studied. These problems seek filters that can estimate the unknown inputs of the given system either exactly, almostly or optimally in the absence of unintended (disturbance) inputs, and on the other hand, in the presence of unintended (disturbance) inputs, they seek that the influence of such disturbances on the estimation error be as small as possible in a certain norm (H2 or H,) sense. Both continuous- and discrete-time systems are considered. For discrete-time systems, the counter parts of all the above problems when an ,,-step delay in estimation is present are introduced and studied. Next, we focus on the exact and almost deconvolution but this time when the uncertainties in plant dynamics can be structurally modeled by a ,-block as a feedback element to the nominally known plant dynamics. This is done either in the presence or absence of external disturbances. Copyright © 2001 John Wiley & Sons, Ltd. [source] Optimal disturbance rejection control for singularly perturbed composite systems with time-delay,ASIAN JOURNAL OF CONTROL, Issue 3 2009Bao-Lin Zhang Abstract The optimal control problem for a class of singularly perturbed time-delay composite systems affected by external disturbances is investigated. The system is decomposed into a fast linear subsystem and a slow time-delay subsystem with disturbances. For the slow subsystem, the feedforward compensation technique is proposed to reject the disturbances, and the successive approximation approach (SAA) is applied to decompose it into decoupled subsystems and solve the two-point boundary value (TPBV) problem. By combining with the optimal control law of the fast subsystem, the feedforward and feedback composite control (FFCC) law of the original composite system is obtained. The FFCC law consists of analytic state feedback and feedforward terms and a compensation term which is the limit of the adjoint vector sequence. The compensation term can be obtained from an iteration formula of adjoint vectors. Simulation results are employed to test the validity of the proposed design algorithm. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society [source] Robust Tracking Control For A Wheeled Mobile Manipulator With Dual Arms Using Hybrid Sliding-Mode Neural NetworkASIAN JOURNAL OF CONTROL, Issue 4 2007Ching-Chih Tsai ABSTRACT In this paper, a robust tracking controller is proposed for the trajectory tracking problem of a dual-arm wheeled mobile manipulator subject to some modeling uncertainties and external disturbances. Based on backstepping techniques, the design procedure is divided into two levels. In the kinematic level, the auxiliary velocity commands for each subsystem are first presented. A sliding-mode equivalent controller, composed of neural network control, robust scheme and proportional control, is constructed in the dynamic level to deal with the dynamic effect. To deal with inadequate modeling and parameter uncertainties, the neural network controller is used to mimic the sliding-mode equivalent control law; the robust controller is designed to compensate for the approximation error and to incorporate the system dynamics into the sliding manifold. The proportional controller is added to improve the system's transient performance, which may be degraded by the neural network's random initialization. All the parameter adjustment rules for the proposed controller are derived from the Lyapunov stability theory and e-modification such that uniform ultimate boundedness (UUB) can be assured. A comparative simulation study with different controllers is included to illustrate the effectiveness of the proposed method. [source] Recursive Back-Stepping Design of An Adaptive Fuzzy Controller for Strict Output Feedback Nonlinear SystemsASIAN JOURNAL OF CONTROL, Issue 3 2002Wei-Yen Wang ABSTRACT In this paper, a back-stepping adaptive fuzzy controller is proposed for strict output feedback nonlinear systems. The unknown nonlinearity and external disturbances of such systems are considered. We assume that only the output of the system is available for measurement. As a result, two filters are constructed to estimate the states of strict output feedback systems. Since fuzzy systems can uniformly approximate nonlinear continuous functions to arbitrary accuracy, the adaptive fuzzy control theory combined with a tuning function scheme is developed to derive the control laws of strict output feedback systems that possess unknown functions. Moreover, the H, performance condition is introduced to attenuate the effect of the modeling error and external disturbances. Finally, an example is simulated in order to confirm the applicability of the proposed method. [source] State estimation for time-delay systems with probabilistic sensor gain reductionsASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2008Xiao He Abstract This paper presents a new state estimation problem for a class of time-delay systems with probabilistic sensor gain faults. The sensor gain reductions are described by a stochastic variable that obeys the uniform distribution in a known interval [,, ,], which is a natural reflection of the probabilistic performance deterioration of sensors when gain reduction faults occur. Attention is focused on the design of a state estimator such that for all possible sensor faults and all external disturbances, the filtering error dynamic is asymptotically mean-square stable as well as fulfils a prescribed disturbance attenuation level. The existence of desired filters is proved to depend on the feasibility of a certain linear matrix inequality (LMI), and a numerical example is given to illustrate the effectiveness of the proposed design approach. Copyright © 2008 Curtin University of Technology and John Wiley & Sons, Ltd. [source] |