External Calcium (external + calcium)

Distribution by Scientific Domains


Selected Abstracts


Regulation of early response genes in pancreatic acinar cells: external calcium and nuclear calcium signalling aspects

ACTA PHYSIOLOGICA, Issue 1 2009
N. Fedirko
Abstract Nuclear calcium signalling has been an important topic of investigation for many years and some aspects have been the subject of debate. Our data from isolated nuclei suggest that the nuclear pore complexes (NPCs) are open even after depletion of the Ca2+ store in the nuclear envelope (NE). The NE contains ryanodine receptors (RyRs) and Ins(1,4,5)P3 receptors [Ins(1,4,5)P3Rs], most likely on both sides of the NE and these can be activated separately and independently: the RyRs by either NAADP or cADPR, and the Ins(1,4,5)P3Rs by Ins(1,4,5)P3. We have also investigated the possible consequences of nuclear calcium signals: the role of Ca2+ in the regulation of immediate early genes (IEG): c-fos, c-myc and c-jun in pancreatic acinar cells. Stimulation with Ca2+ -mobilizing agonists induced significant increases in levels of expression. Cholecystokinin (CCK) (10 nm) evoked a substantial rise in the expression levels, highly dependent on external Ca2+: the IEG expression level was lowest in Ca2+ -free solution, increased at the physiological level of 1 mm [Ca2+]o and was maximal at 10 mm [Ca2+]o, i.e.: 102 ± 22% and 163 ± 15% for c-fos; c-myc ,73 ± 13% and 106 ± 24%; c-jun ,49 ± 8% and 59 ± 9% at 1 and 10 mm of extracellular Ca2+ respectively. A low CCK concentration (10 pm) induced a small increase in expression. We conclude that extracellular Ca2+ together with nuclear Ca2+ signals induced by CCK play important roles in the induction of IEG expression. [source]


Hypotonic stress influence the membrane potential and alter the proliferation of keratinocytes in vitro

EXPERIMENTAL DERMATOLOGY, Issue 4 2007
Mónika Gönczi
Abstract:, Keratinocyte proliferation and differentiation is strongly influenced by mechanical forces. We investigated the effect of osmotic changes in the development of HaCaT cells in culture using intracellular calcium measurements, electrophysiological recordings and molecular biology techniques. The application of hypotonic stress (174 mOsmol/l) caused a sustained hyperpolarization of HaCaT cells from a resting potential of ,27 ± 4 to ,51 ± 9 mV. This change was partially reversible. The surface membrane channels involved in the hyperpolarization were identified as chloride channels due to the lack of response in the absence of the anion. Cells responded with an elevation of intracellular calcium concentration to hypotonic stress, which critically depended on external calcium. The presence of phorbol-12-myristate-13-acetate in the culture medium for 12 h augmented the subsequent response to hypotonic stress. A sudden switch from iso- to hypotonic solution increased cell proliferation and suppressed the production of involucrin, filaggrin and transglutaminase, markers of keratinocyte differentiation. It is concluded that sudden mechanical forces increase the proliferation of keratinocytes through alterations in their membrane potential and intracellular calcium concentration. These changes together with additional modifications in channel expression and intracellular signalling mechanisms could underlie the increased proliferation of keratinocytes in hyperproliferative skin diseases. [source]


Glutamate receptors modulate sodium-dependent and calcium-independent vitamin C bidirectional transport in cultured avian retinal cells

JOURNAL OF NEUROCHEMISTRY, Issue 2 2009
Camila Cabral Portugal
Abstract Vitamin C is transported in the brain by sodium vitamin C co-transporter 2 (SVCT-2) for ascorbate and glucose transporters for dehydroascorbate. Here we have studied the expression of SVCT-2 and the uptake and release of [14C] ascorbate in chick retinal cells. SVCT-2 immunoreactivity was detected in rat and chick retina, specially in amacrine cells and in cells in the ganglion cell layer. Accordingly, SVCT-2 was expressed in cultured retinal neurons, but not in glial cells. [14C] ascorbate uptake was saturable and inhibited by sulfinpyrazone or sodium-free medium, but not by treatments that inhibit dehydroascorbate transport. Glutamate-stimulated vitamin C release was not inhibited by the glutamate transport inhibitor l -,-threo-benzylaspartate, indicating that vitamin C release was not mediated by glutamate uptake. Also, ascorbate had no effect on [3H] d -aspartate release, ruling out a glutamate/ascorbate exchange mechanism. 2-Carboxy-3-carboxymethyl-4-isopropenylpyrrolidine (Kainate) or NMDA stimulated the release, effects blocked by their respective antagonists 6,7-initroquinoxaline-2,3-dione (DNQX) or (5R,2S)-(1)-5-methyl-10,11-dihydro-5H -dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801). However, DNQX, but not MK-801 or 2-amino-5-phosphonopentanoic acid (APV), blocked the stimulation by glutamate. Interestingly, DNQX prevented the stimulation by NMDA, suggesting that the effect of NMDA was mediated by glutamate release and stimulation of non-NMDA receptors. The effect of glutamate was neither dependent on external calcium nor inhibited by 1,2-bis (2-aminophenoxy) ethane-N,,N,,N,,N,,-tetraacetic acid tetrakis (acetoxy-methyl ester) (BAPTA-AM), an internal calcium chelator, but was inhibited by sulfinpyrazone or by the absence of sodium. In conclusion, retinal cells take up and release vitamin C, probably through SVCT-2, and the release can be stimulated by NMDA or non-NMDA glutamate receptors. [source]


Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 8 2006
Carmen Vale
Abstract A channel open on the membrane can be formed by palytoxin (PTX). Ten nanomolar PTX caused an irreversible increase in the cytosolic calcium concentration ([Ca2+]c), which was abolished in the absence of external calcium. The increase was eliminated by saxitoxin (STX) and nifedipine (NIF). Calcium rise is secondary to the membrane depolarization. PTX effect on calcium was dependent on extracellular Na+. Li+ decreased the PTX-evoked rise in [Ca2+]c; replacement of Na+ by N-methyl-D-glucamine (NMDG) abolished PTX-induced calcium increase. [Ca2+]c increase by PTX was strongly reduced after inhibition of the reverse operation of the Na+/Ca2+ exchanger, in the presence of antagonists of excitatory amino acid (EAA) receptors, and by inhibition of neurotransmitter release. PTX did not modify calcium extrusion by the plasma membrane Ca2+ -ATPase (PMCA), because blockade of the calcium pump increased rather than decreased the PTX-induced calcium influx. Extracellular levels of glutamate and aspartate were measured by HPLC and exocytotic neurotransmitter release by determination of synaptic vesicle exocytosis using total internal reflection fluorescence microscopy (TIRFM). PTX caused a concentration-dependent increase in EAA release to the culture medium. Ten nanomolar PTX decreased cell viability by 30% within 5 min. PTX-induced calcium influx involves three pathways: Na+ -dependent activation of voltage-dependent sodium channels (VDSC) and voltage-dependent calcium channels (VDCC), reverse operation of the Na+/Ca2+ exchanger, and indirect activation of EAA receptors through glutamate release. The neuronal injury produced by the toxin could be partially mediated by the PTX-induced overactivation of EAA receptors, VDSC, VDCC and the glutamate efflux into the extracellular space. © 2006 Wiley-Liss, Inc. [source]


Progesterone induces activation in Octopus vulgaris spermatozoa

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2001
Elisabetta Tosti
Abstract The purpose of the present study was to determine whether Octopus vulgaris spermatozoa are activated by progesterone stimulation. Spermatozoa were collected from the spermatophores in the Needham's sac of the male (MS) and from the spermathecae of oviducal glands of the female (FS). We used transmission (TEM) and scanning (SEM) electron microscopy to study the morphology of untreated, Ca2+ ionophore A23187 and progesterone‐treated MS spermatozoa, and untreated FS spermatozoa. We showed that ionophore and progesterone stimulation of MS spermatozoa induce breakdown of the membranes overlapping the acrosomal region, exposing the spiralized acrosome. These modifications resemble the acrosome reaction observed in other species. FS stored in the spermathecae did not show the membranes covering the acrosomal region present in the MS spermatozoa. When ionophore and progesterone treatments were performed in Ca2+‐free artificial sea water, no changes were observed, suggesting the role of external calcium in modifying membrane morphology. Lectin studies showed a different fluorescence distribution and membrane arrangement of FS‐untreated spermatozoa with respect to the MS, suggesting that spermatozoa transferred in the female genital tract after mating, are stored in a pre‐activated state. The plasma membrane of the untreated MS and FS spermatozoa was labelled with Progesterone‐BSA‐FITC, indicating the presence of plasma membrane progesterone receptor. Taken together these data suggest that progesterone induces an acrosome‐ like reaction in MS spermatozoa similar to that induced by calcium elevation. In addition progesterone may play a role in the pre‐activation of spermatozoa stored in the female tract, further supporting the hypothesized parallelism between cephalopods and vertebrates. Mol. Reprod. Dev. 59:97–105, 2001. © 2001 Wiley‐Liss, Inc. [source]