Home About us Contact | |||
External Ca2+ (external + ca2+)
Selected AbstractsPhototropism of Thalli and Rhizoids Developed from the Thallus Segments of Bryopsis hypnoides LamourouxJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 6 2006Nai-Hao Ye Abstract Newly regenerated thalli were used to study the phototropism of Bryopsis hypnoides Lamouroux under different qualities of light. Positive phototropism in the thalli and negative phototropism in the rhizoids of B. hypnoides were investigated and analyzed in terms of bending. Both thalli and rhizoids developed from thallus segments exhibited typical tip growth, and their photoreceptive sites for phototropism were also restricted to the apical hemisphere. The bending curvature of rhizoids and thalli were determined with unilateral lights at various wavelengths and different fluence rates after a fixed duration of illumination. The trends of bending from the rhizoid and thallus were coincident, which showed that the action spectrum had a large range, from ultraviolet radiation (366.5 nm) to green light (524 nm). Based on the bending curvatures, blue light had the highest efficiency, while the efficiency of longer wavelengths (>500 nm) was significantly lower. External Ca2+ had no effect on the bending curvature of thalli and rhizoids. Blue light (440 nm) induced thallus branching from rhizoids, while red light (650 nm) had no such effect. Fast-occurring chloroplast accumulation in the outermost cytoplasmic layer of the blue light (440 nm)-irradiated region in the rhizoid was observed, from which protrusions (new thalli) arose after 4 h of the onset of illumination, and this action was thought to be driven by the dynamics of actin microfilaments. (Managing editor: Wei Wang) [source] Regulation of early response genes in pancreatic acinar cells: external calcium and nuclear calcium signalling aspectsACTA PHYSIOLOGICA, Issue 1 2009N. Fedirko Abstract Nuclear calcium signalling has been an important topic of investigation for many years and some aspects have been the subject of debate. Our data from isolated nuclei suggest that the nuclear pore complexes (NPCs) are open even after depletion of the Ca2+ store in the nuclear envelope (NE). The NE contains ryanodine receptors (RyRs) and Ins(1,4,5)P3 receptors [Ins(1,4,5)P3Rs], most likely on both sides of the NE and these can be activated separately and independently: the RyRs by either NAADP or cADPR, and the Ins(1,4,5)P3Rs by Ins(1,4,5)P3. We have also investigated the possible consequences of nuclear calcium signals: the role of Ca2+ in the regulation of immediate early genes (IEG): c-fos, c-myc and c-jun in pancreatic acinar cells. Stimulation with Ca2+ -mobilizing agonists induced significant increases in levels of expression. Cholecystokinin (CCK) (10 nm) evoked a substantial rise in the expression levels, highly dependent on external Ca2+: the IEG expression level was lowest in Ca2+ -free solution, increased at the physiological level of 1 mm [Ca2+]o and was maximal at 10 mm [Ca2+]o, i.e.: 102 ± 22% and 163 ± 15% for c-fos; c-myc ,73 ± 13% and 106 ± 24%; c-jun ,49 ± 8% and 59 ± 9% at 1 and 10 mm of extracellular Ca2+ respectively. A low CCK concentration (10 pm) induced a small increase in expression. We conclude that extracellular Ca2+ together with nuclear Ca2+ signals induced by CCK play important roles in the induction of IEG expression. [source] Activation of a calcium entry pathway by sodium pyrithione in the bag cell neurons of AplysiaDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2004Ronald J. Knox Abstract The ability of sodium pyrithione (NaP), an agent that produces delayed neuropathy in some species, to alter neuronal physiology was accessed using ratiometric imaging of cytosolic free Ca2+ concentration ([Ca2+]i) in fura PE-filled cultured Aplysia bag cell neurons. Bath-application of NaP evoked a [Ca2+]i elevation in both somata and neurites with an EC50 of ,300 nM and a Hill coefficient of ,1. The response required the presence of external Ca2+, had an onset of 3,5 min, and generally reached a maximum within 30 min. 2-Methyl-sulfonylpyridine, a metabolite and close structural analog of NaP, did not elevate [Ca2+]i. Under whole-cell current-clamp recording, NaP produced a ,14 mV depolarization of resting membrane potential that was dependent on external Ca2+. These data suggested that NaP stimulates Ca2+ entry across the plasma membrane. To minimize the possibility that a change in cytosolic pH was the basis for NaP-induced Ca2+ entry, bag cell neuron intracellular pH was estimated with the dye 2,,7,-bis(carboxyethyl-5(6)-carboxy-fluorescein acetoxy methylester. Exposure of the neurons to NaP did not alter intracellular pH. The slow onset and sustained nature of the NaP response suggested that a cation exchange mechanism coupled either directly or indirectly to Ca2+ entry could underlie the phenomenon. However, neither ouabain, a Na+/K+ ATPase inhibitor, nor removal of extracellular Na+, which eliminates Na+/Ca2+ exchanger activity, altered the NaP-induced [Ca2+]i elevation. Finally, the possibility that NaP gates a Ca2+ -permeable ion channel in the plasma membrane was examined. NaP did not appear to activate two major forms of bag cell neuron Ca2+ -permeable ion channels, as Ca2+ entry was unaffected by inhibition of voltage-gated Ca2+ channels using nifedipine or by inhibition of a voltage-dependent, nonselective cation channel using a high concentration of tetrodotoxin. In contrast, two potential store-operated Ca2+ entry current inhibitors, SKF-96365 and Ni2+, attenuated NaP-induced Ca2+ entry. We conclude that NaP activates a slow, persistent Ca2+ influx in Aplysia bag cell neurons. © 2004 Wiley Periodicals, Inc. J Neurobiol 411,423, 2004 [source] Screening for synaptic defects revealed a locus involved in presynaptic and postsynaptic functions in Drosophila embryosDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2001Etsuko Takasu-Ishikawa Abstract To identify genes involved in synaptic functions, we screened lethal enhancer trap lines by monitoring synaptic activities at the neuromuscular junction in Drosophila embryos. It was found that MY7919, thus isolated, has moderate defects in both pre- and postsynaptic functions. The mean amplitudes of spontaneous as well as evoked synaptic currents were smaller than those in wild-type. The failure rate was higher than normal at any given concentration of external Ca2+, indicating that presynaptic functions were impaired. In addition, the mean amplitude of miniature synaptic currents was smaller, and the unitary current amplitudes of junctional glutamate receptor channels were slightly but significantly smaller. Thus, postsynaptic functions were also altered. The gene was cloned and found to be identical to the previously reported apontic (=tracheae defective) locus, which is believed to be a transcription factor expressed in the central nervous system (CNS) as well as in the head, tracheae, and heart. Immunohistochemical analysis using an antiapontic antibody revealed that the protein is localized to nuclei. Null alleles of the apontic locus were obtained by imprecise excision of the enhancer trap vector. Synaptic activities in null mutants were not different from those of the original allele, even though null homozygotes had uncontracted ventral nerve cords and more severe behavioral phenotypes. The morphology of the neuromuscular junction of the null mutant was qualitatively similar to that of wild-type, with the presence of typical pre- and postsynaptic specializations, but with some suggestions of quantitative differences. This strategy for screening mutants with synaptic defects will reveal more genes directly or indirectly affecting synaptic transmission. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 101,119, 2001 [source] Dihydropyridine- and voltage-sensitive Ca2+ entry in human parathyroid cellsEXPERIMENTAL PHYSIOLOGY, Issue 7 2009Keitaro Yokoyama Patch-clamp and fluorescence measurements of cytoplasmic Ca2+ concentration ([Ca2+]i) were performed to directly detect extracellular Ca2+ entry into cultured parathyroid cells from patients with secondary hyperparathyroidism. Cells loaded with fluo-3 AM or fluo-4 AM showed a transient increase in fluorescence (Ca2+ transient) following 10 s exposure to 150 mm K+ solution in the presence of millimolar concentrations of external Ca2+. The Ca2+ transient was completely inactivated after 30,40 s exposure to the high-K+ solution, was reduced by dihydropyridine antagonists and was enhanced by FPL-64176, an L-type Ca2+ channel agonist. The electrophysiological and pharmacological properties of the whole-cell Ca2+ and Ba2+ currents were similar to those of L-type Ca2+ channels. The Ca2+ transients induced by 10 s exposure to 3.0 mm extracellular Ca2+ concentration ([Ca2+]o) were inhibited by dihydropyridine antagonists and were partly inactivated following 30,40 s exposure to the high-K+ solution. These results demonstrate, for the first time, that human parathyroid cells express L-type-like Ca2+ channels that are possibly involved in the [Ca2+]o -induced change in [Ca2+]i. This Ca2+ entry system might provide a compensatory pathway for the negative feedback regulation of parathyroid hormone secretion, especially in hyperplastic conditions in which the Ca2+ -sensing receptor is poorly expressed. [source] RESEARCH ARTICLE: Fungicidal activity of amiodarone is tightly coupled to calcium influxFEMS YEAST RESEARCH, Issue 3 2008Sabina Muend Abstract The antiarrhythmic drug amiodarone has microbicidal activity against fungi, bacteria and protozoa. In Saccharomyces cerevisiae, amiodarone triggers an immediate burst of cytosolic Ca2+, followed by cell death markers. Ca2+ transients are a common response to many forms of environmental insults and toxic compounds, including osmotic and pH shock, endoplasmic reticulum stress, and high levels of mating pheromone. Downstream signaling events involving calmodulin, calcineurin and the transcription factor Crz1 are critical in mediating cell survival in response to stress. In this study we asked whether amiodarone induced Ca2+ influx was beneficial, toxic or a bystander effect unrelated to the fungicidal effect of the drug. We show that downregulation of Ca2+ channel activity in stationary phase cells correlates with increased resistance to amiodarone. In actively growing cells, extracellular Ca2+ modulated the size and shape of the Ca2+ transient and directly influenced amiodarone toxicity. Paradoxically, protection was achieved both by removal of external Ca2+ or by adding high levels of CaCl2 (10 mM) to block the drug induced Ca2+ burst. Our results support a model in which the fungicidal activity of amiodarone is mediated by Ca2+ stress, and highlight the pathway of Ca2+ mediated cell death as a promising target for antifungal drug development. [source] Mechanisms of glutamate release elicited in rat cerebrocortical nerve endings by ,pathologically' elevated extraterminal K+ concentrationsJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Luca Raiteri Abstract Extracellular [K+] can increase during some pathological conditions, resulting into excessive glutamate release through multiple mechanisms. We here investigate the overflow of [3H]d -aspartate ([3H] d -ASP) and of endogenous glutamate elicited by increasing [K+] from purified rat cerebrocortical synaptosomes. Depolarization with [K+] , 15 mmol/L provoked [3H] d -ASP and glutamate overflows almost totally dependent on external Ca2+. Consistent with release by exocytosis, the overflow of [3H] d -ASP evoked by 12 mmol/L K+ was sensitive to clostridial toxins. The overflows evoked by 35/50 mmol/L K+ remained external Ca2+ -dependent by more than 50%. The Ca2+ -independent components of the [3H] d -ASP overflows evoked by [K+] > 15 mmol/L were prevented by the glutamate transporter inhibitors dl - threo -beta-benzyloxyaspartate (dl -TBOA) and dihydrokainate. Differently, the overflows of endogenous glutamate provoked by [K+] > 15 mmol/L were insensitive to both inhibitors; the external Ca2+ -independent glutamate overflow caused by 50 mmol/L KCl was prevented by bafilomycin, by chelating intraterminal Ca2+, by blocking the mitochondrial Na+/Ca2+ exchanger and, for a small portion, by blocking anion channels. In contrast to purified synaptosomes, the 50 mmol/L K+ -evoked release of endogenous glutamate or [3H]D-ASP was inhibited by dl -TBOA in crude synaptosomes; moreover, it was external Ca2+ -insensitive and blocked by dl -TBOA in purified gliosomes, suggesting that carrier-mediated release of endogenous glutamate provoked by excessive [K+] in CNS tissues largely originates from glia. [source] Calcium-dependent K current in plasma membranes of dermal cells of developing bean cotyledonsPLANT CELL & ENVIRONMENT, Issue 2 2004W.-H. ZHANG ABSTRACT In developing seeds of bean (Phaseolus vulgaris L.), phloem-imported assimilates (largely sucrose and potassium) are released from coats to seed apoplasm and subsequently retrieved by the dermal cell complexes of cotyledons. To investigate the mechanisms of K+ uptake by the cotyledons, protoplasts of dermal cell complexes were isolated and whole-cell currents across their plasma membranes were measured with the patch-clamp technique. A weakly rectified cation current displaying a voltage-dependent blockade by external Ca2+ and acidic pH, dominated the conductance of the protoplasts. The P haseolus v ulgaris Cotyledon Dermal-cell pH and Calcium-dependent Cation Conductance (Pv-CD-pHCaCC) was highly selective for K+ over Ca2+ and Cl,. For K+ current through Pv-CD-pHCaCC a sigmoid shaped current,voltage (I,V) curve was observed with negative conductance at voltages between ,200 and ,140 mV. This negative K+ conductance was Ca2+ dependent. With other univalent cations (Na+, Rb+, NH4+) the currents were smaller and were not Ca2+ dependent. Reversal potentials remained constant when external K+ was substituted with these cations, suggesting that Pv-CD-pHCaCC channels were non-selective. The Pv-CD-pHCaCC would provide a pathway for K+ and other univalent cation influx into developing cotyledons. These cation influxes could be co-ordinated with sucrose influx via pH and Ca2+dependence. [source] Evidence for chloroplast control of external Ca2+ -induced cytosolic Ca2+ transients and stomatal closureTHE PLANT JOURNAL, Issue 6 2008Hironari Nomura Summary The role of guard cell chloroplasts in stomatal function is controversial. It is usually assumed that stomatal closure is preceded by a transient increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) in the guard cells. Here, we provide the evidence that chloroplasts play a critical role in the generation of extracellular Ca2+ ([Ca2+]ext)-induced [Ca2+]cyt transients and stomatal closure in Arabidopsis. CAS (Ca2+ sensing receptor) is a plant-specific putative Ca2+ -binding protein that was originally proposed to be a plasma membrane-localized external Ca2+ sensor. In the present study, we characterized the intracellular localization of CAS in Arabidopsis with a combination of techniques, including (i) in vivo localization of green fluorescent protein (GFP) fused gene expression, (ii) subcellular fractionation and fractional analysis of CAS with Western blots, and (iii) database analysis of thylakoid membrane proteomes. Each technique produced consistent results. CAS was localized mainly to chloroplasts. It is an integral thylakoid membrane protein, and the N-terminus acidic Ca2+ -binding region is likely exposed to the stromal side of the membrane. The phenotype of T-DNA insertion CAS knockout mutants and cDNA mutant-complemented plants revealed that CAS is essential for stomatal closure induced by external Ca2+. In contrast, overexpression of CAS promoted stomatal closure in the absence of externally applied Ca2+. Furthermore, using the transgenic aequorin system, we showed that [Ca2+]ext -induced [Ca2+]cyt transients were significantly reduced in CAS knockout mutants. Our results suggest that thylakoid membrane-localized CAS is essential for [Ca2+]ext -induced [Ca2+]cyt transients and stomatal closure. [source] EXCITATION,CONTRACTION COUPLING FROM THE 1950s INTO THE NEW MILLENNIUMCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 9 2006AF Dulhunty SUMMARY 1Excitation,contraction coupling is broadly defined as the process linking the action potential to contraction in striated muscle or, more narrowly, as the process coupling surface membrane depolarization to Ca2+ release from the sarcoplasmic reticulum. 2We now know that excitation,contraction coupling depends on a macromolecular protein complex or ,calcium release unit'. The complex extends the extracellular space within the transverse tubule invaginations of the surface membrane, across the transverse tubule membrane into the cytoplasm and then across the sarcoplasmic reticulum membrane and into the lumen of the sarcoplasmic reticulum. 3The central element of the macromolecular complex is the ryanodine receptor calcium release channel in the sarcoplasmic reticulum membrane. The ryanodine receptor has recruited a surface membrane L-type calcium channel as a ,voltage sensor' to detect the action potential and the calcium-binding protein calsequestrin to detect in the environment within the sarcoplasmic reticulum. Consequently, the calcium release channel is able to respond to surface depolarization in a manner that depends on the Ca2+ load within the calcium store. 4The molecular components of the ,calcium release unit' are the same in skeletal and cardiac muscle. However, the mechanism of excitation,contraction coupling is different. The signal from the voltage sensor to ryanodine receptor is chemical in the heart, depending on an influx of external Ca2+ through the surface calcium channel. In contrast, conformational coupling links the voltage sensor and the ryanodine receptor in skeletal muscle. 5Our current understanding of this amazingly efficient molecular signal transduction machine has evolved over the past 50 years. None of the proteins had been identified in the 1950s; indeed, there was debate about whether the molecules involved were, in fact, protein. Nevertheless, a multitude of questions about the molecular interactions and structures of the proteins and their interaction sites remain to be answered and provide a challenge for the next 50 years. [source] |