Extensive Introgression (extensive + introgression)

Distribution by Scientific Domains


Selected Abstracts


Disruption of the Wolbachia surface protein gene wspB by a transposable element in mosquitoes of the Culex pipiens complex (Diptera, Culicidae)

INSECT MOLECULAR BIOLOGY, Issue 2 2007
Y. O. Sanogo
Abstract Culex pipiens quinquefasciatus Say and Culex pipiens pipiens Linnaeus are sibling species incriminated as important vectors of emerging and re-emerging infectious diseases worldwide. The two forms differ little morphologically and are differentiated mainly based upon ecological, behavioural, physiological and genetic traits. Within the North American zone of sympatry, populations of Cx. p. quinquefasciatus and Cx. p. pipiens undergo extensive introgression and hybrid forms have been reported in nature. Both Cx. p. quinquefasciatus and Cx. p. pipiens are infected with the endosymbiotic bacteria Wolbachia pipientis. Here, we report the presence of a transposable element belonging to the IS256 family (IS256wPip) associated with Wolbachia in both Cx. p. quinquefasciatus and Cx. p. pipiens populations. Using reverse transcriptase PCR and sequence analysis, we show that IS256wPip has disrupted the wspB locus, a paralogue of the Wolbachia outer membrane protein (wspA) gene. The inactivation of the wspB appears to be specific to Cx. p. quinquefasciatus and to hybrids of the two forms, and was not observed in the surveyed Cx. p. pipiens mosquitoes. Our results support the hypothesis of a different origin of North American Cx. p. quinquefasciatus and Cx. p. pipiens populations. The flux of mobile genetic elements in the Wolbachia wPip genome could explain the high level of crossing types observed among different Culex populations. The insertion of IS256wPip into wspB may comprise a genetic candidate for discriminating Wolbachia symbionts in Culex. [source]


Genetic and morphological characterization of a Lake Ohrid endemic, Salmo (Acantholingua) ohridanus with a comparison to sympatric Salmo trutta

JOURNAL OF FISH BIOLOGY, Issue A 2006
S. Su
Analysis of both uni-(two mtDNA gene sequences) and bi-parentally (seven microsatellite loci) inherited genetic markers, together with analysis of 40 morphological characters, described Salmo ohridanus as a highly divergent member of the genus Salmo. Based on comparative substitution rate differences at the cytochrome b gene, and a rough estimated age of the Salmo trutta complex (i.e. at least 2 million years), the S. ohridanus and Salmo obtusirostris clade probably split from a common ancestor of brown trout Salmo trutta >4 million years ago, overlapping with minimum age estimates of the formation of Europe's oldest freshwater habitat, Lake Ohrid. Comparative analysis with Lake Ohrid brown trout (known regionally as Salmo letnica), supported the notion that these fish have more recently colonized the lake and phylogenetically belong to the Adriatic lineage of brown trout. It is further suggested that species-specific saturation in the mtDNA control region underestimated the divergence between S. ohridanus and S. trutta. Evidence of rare hybridization between S. ohridanus and Lake Ohrid brown trout was seen at both mtDNA and microsatellite markers, but there was no support for extensive introgression. [source]


Spawning times, reproductive compatibilities and genetic structuring in the Acropora aspera group: evidence for natural hybridization and semi-permeable species boundaries in corals

MOLECULAR ECOLOGY, Issue 8 2002
Madeleine J. H. Van Oppen
Abstract Species boundaries among five sympatric coral species of the Indo-Pacific Acropora aspera group were examined by a combination of in vitro breeding trials, comparisons of spawning times and DNA sequence analysis of ribosomal DNA internal transcribed spacer (rDNA ITS) and 5.8S regions. The breeding trials showed that reproductive compatibility exists between at least some colonies of all the species pairs tested, suggesting a large potential for natural hybridization and introgression. The Acropora ITS regions exhibited extremely high levels of variability (up to ,62% for ITS1, ,11% for 5.8S and ,43% for ITS2), but most of the variation was shared among four of the five species, A. millepora, A. papillare, A. pulchra and A. spathulata, consistent with extensive introgression. Phylogenetic analyses did not resolve these four species as distinct clusters across a wide biogeographic region stretching from the southern Great Barrier Reef to Papua New Guinea. However, most colonies of the fifth species, A. aspera, constituted a distinct clade in phylogenetic analyses. This is consistent with our observations of a semi-permeable temporal barrier involving differences in spawning times between this and the other four species. Although the majority of colonies of all five species generally spawned within 90 min of each other, in two out of four years, gametes were absent prior to mass spawning episodes from at least some A. aspera colonies. Hence, our data suggest that transient reproductive barriers may be the result of year-to-year variation in the date of spawning and that this difference in spawning time contributes to the genetic structure detected among Acropora species in this group. Occasional leakage through the reproductive barrier was confirmed by the observation of A. aspera ×A. pulchra F1 hybrids, identified based on additivity of ITS sequences. [source]


Conservation genetics of the endangered Shenandoah salamander (Plethodon shenandoah, Plethodontidae)

ANIMAL CONSERVATION, Issue 2 2001
Daniel W. Carpenter
The Shenandoah salamander (Plethodon shenandoah) is restricted to three isolated talus outcrops in Shenandoah National Park, VA, USA and has one of the smallest ranges of any tetrapod vertebrate. This species was listed as endangered under the US Endangered Species Act in 1989 over concern that direct competition with the red-backed salamander (Plethodon cinereus), successional habitat changes, and human impacts may cause its decline and possible extinction. We address two issues herein: (1) whether extensive introgression (through long-term hybridization) is present between the two species and threatens the survival of P. shenandoah, and (2) the level of population structure within P. shenandoah. We provide evidence from mtDNA haplotypes that shows no genetic differentiation among the three isolates of P. shenandoah, suggesting that their fragmentation is a geologically recent event, and/or that the isolates are still connected by occasional gene flow. There is also no evidence for extensive introgression of alleles in either direction between P. cinereus and P. shenandoah, which suggests that P. shenandoah may not be in danger of being genetically swamped out through hybridization with P. cinereus. [source]


Genetic relationship amongst the major non-coding regions of mitochondrial DNAs in wild boars and several breeds of domesticated pigs

ANIMAL GENETICS, Issue 3 2001
N. Okumura
We completed phylogenetic analysis of the major non-coding region of the mitochondrial DNA (mtDNA) from 159 animals of eight Euro-American and six East Asian domesticated pig breeds and 164 Japanese and five European wild boars. A total of 62 mtDNA haplotypes were detected. Alignment of these regions revealed nucleotide variations (including gaps) at 73 positions, including 58 sites with transition nucleotide substitutions, and two transversion substitutions. Phylogenetic analysis of the sequences could not organize domestic pig breeds into discrete clusters. In addition, many of the haplotypes found in members of diverged clustering groups were found primarily in Euro-American pig breeds, indicating extensive introgression of Asian domestic pigs into European breeds. Furthermore, phylogenetic analysis allocated the DNA sequences of non-coding regions into two different groups, and the deepest branchpoint of this porcine phylogeny corresponded to 86 000,136 000 years before present. This time of divergence would predate the historical period when the pig is thought to have been domesticated from the wild boar. [source]