Extensive Data Set (extensive + data_set)

Distribution by Scientific Domains


Selected Abstracts


Changes in fish assemblages in catchments in north-eastern Spain: biodiversity, conservation status and introduced species

FRESHWATER BIOLOGY, Issue 8 2010
ALBERTO MACEDA-VEIGA
Summary 1. North-eastern Spain is a hot spot for the introduction of alien fish species, and its native fish fauna is one of the most endangered worldwide. We used an extensive data set from 2002 to 2003 and historical information from the area to characterize fish diversity and establish conservation priorities in river catchments. 2. Diversity indices were used to characterize fish diversity at the basin scale. An index of conservation status was applied for each species, which considers the occurrence, abundance and endemicity of each taxon. We used indirect ordination methods to test the relationship among basin features and to identify those variables most correlated with each other. To identify physical, biotic and environmental characteristics that seem to make a basin particularly susceptible to invasion, we performed a step-wise multiple regression to examine the relationship between the number of native, translocated and introduced fish species (including the original native species richness of each basin), and landscape variables. 3. Over a period of approximately 50 years, the mean range size of native fish species has decreased by 60%. The greatest decline occurred in Gasterosteus gymnurus, Anguilla anguilla and Salaria fluviatilis, for which species over 75% of the original distribution area has been lost. The species with the highest conservation index were Gasterosteus gymnurus and Salaria fluviatilis. 4. Basin area and the catchment type explained 70% of variation in native species richness, whereas the number of dams and basin area accounted for more than 80% of variation in the number of introduced species. 5. The original native species richness and the number of introduced species at basin scale were not related, and thus there was no evidence of "biotic resistance" to invasion. The restoration of natural hydrologic processes and the development of specific management tools to protect native species, such as the prioritization of areas for fish conservation and the eradication of local populations of exotic species, are required to restore native fish fauna in these catchments. [source]


Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams

FRESHWATER BIOLOGY, Issue 1 2007
SYLVAIN DOLÉDEC
Summary 1. Relating processes occurring at a local scale to the natural variability of ecosystems at a larger scale requires the design of predictive models both to orientate stream management and to predict the effects of larger scale disturbances such as climate changes. Our study contributes to this effort by providing detailed models of the hydraulic preferences of 151 invertebrate taxa, mostly identified at the species level. We used an extensive data set comprising 580 invertebrate samples collected using a Surber net from nine sites of second and third order streams during one, two or three surveys at each site. We used nested non-linear mixed models to relate taxon local densities to bed shear stresses estimated from FliesswasserStammTisch hemisphere numbers. 2. An average model by taxon, i.e. independent from surveys, globally explained 25% of the density variations of taxa within surveys. A quadratic relationship existed between the average preferences and the niche breadth of taxa, indicating that taxa preferring extreme hemisphere numbers had a reduced hydraulic niche breadth. A more complete model, where taxa preferences vary across surveys, globally explained 38% of the variation of taxa densities within surveys. Variations in preferences across surveys were weak for taxa preferring extreme hemisphere numbers. 3. There was a significant taxonomic effect on preferences computed from the complete model. By contrast, season, site, average hemisphere number within a survey and average density of taxa within a survey used as covariates did not consistently explain shifts in taxon hydraulic preferences across surveys. 4. The average hydraulic preferences of taxa obtained from the extensive data set were well correlated to those obtained from two additional independent data sets collected in other regions. The consistency of taxon preferences across regions supports the use of regional preference curves for estimating the impact of river management on invertebrate communities. By contrast, the hydraulic niche breadths of taxa computed from the different data sets were not related. [source]


Can taxonomic distinctness assess anthropogenic impacts in inland waters?

FRESHWATER BIOLOGY, Issue 9 2006
A case study from a Mediterranean river basin
Summary 1. It is increasingly recognised that adequate measures of biodiversity should include information on the ,relatedness' of species within ecological assemblages, or the phylogenetic levels at which diversity is expressed. Taxonomic distinctness measures provide a series of indices to achieve this, which are independent of sample size. Taxonomic distinctness has been employed widely in marine systems, where it has been suggested that this index can provide a reliable measure of anthropogenic impact. 2. We tested the behaviour of three related taxonomic distinctiveness indices (Average Taxonomic Distinctness, ,+; Variation in Taxonomic Distinctness, ,+; and Total Taxonomic Distinctness, s,+) in relation to putative levels of anthropogenic impact in inland waters and their potential utility in environmental monitoring, using an extensive data set for aquatic beetles from the south-east of the Iberian Peninsula. 3. Taxonomic distinctness measures were not able to identify human disturbance effects and there were no clear relationships between these new biodiversity measures and the disturbance level recorded at individual localities. Furthermore, the taxonomic distinctness measures used were apparently less sensitive to the effects of anthropogenic impact than other diversity metrics, such as species richness and rarity. 4. We conclude that taxonomic distinctness indices may not always perform as well as other metrics in the assessment of environmental quality. In addition, taxonomic distinctness measure should be interpreted with caution, as their performance and ability to detect anthropogenic disturbance may depend on the phylogenetic structure of sampled taxa within a region, and their evolutionary and ecological history. [source]


Soil and atmospheric water deficits and the distribution of New Zealand's indigenous tree species

FUNCTIONAL ECOLOGY, Issue 2 2001
Leathwick J. R.
Summary 1.,An extensive data set describing the composition of New Zealand's remaining indigenous forests was used to estimate the degree of correlation between measures of both soil and atmospheric water deficit and the distribution of common tree species. 2.,For most species, regression models incorporating measures of air saturation deficit in early autumn, as well as an annual integral of root zone water deficit, provided the best explanation of spatial distribution. This accords strongly with the mechanistic effects of air saturation deficits on transpiration from trees, and the hydraulic risks experienced by trees under high evaporative demand. 3.,Adjustment of root zone water deficits to account for reductions in rainfall in dry years substantially improved model predictions. This suggests that extreme climatic events, such as the El Niño phase of the Southern Oscillation, are likely to have strongly influenced the historic composition of forests in New Zealand's drier eastern lowlands. [source]


Fate of the herbicides glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron in two Finnish arable soils

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 6 2006
Pirkko Laitinen
Abstract The fate of five herbicides (glyphosate, glufosinate-ammonium, phenmedipham, ethofumesate and metamitron) was studied in two Finnish sugar beet fields for 26 months. Soil types were sandy loam and clay. Two different herbicide-tolerant sugar beet cultivars and three different herbicide application schedules were used. Meteorological data were collected throughout the study and soil properties were thoroughly analysed. An extensive data set of herbicide residue concentrations in soil was collected. Five different soil depths were sampled. The study was carried out using common Finnish agricultural practices and represents typical sugar beet cultivation conditions in Finland. The overall observed order of persistence was ethofumesate > glyphosate > phenmedipham > metamitron > glufosinate-ammonium. Only ethofumesate and glyphosate persisted until the subsequent spring. Seasonal variation in herbicide dissipation was very high and dissipation ceased almost completely during winter. During the 2 year experiment no indication of potential groundwater pollution risk was obtained, but herbicides may cause surface water pollution. Copyright © 2006 Society of Chemical Industry [source]


The sizes of species' geographic ranges

JOURNAL OF APPLIED ECOLOGY, Issue 1 2009
Kevin J. Gaston
Summary 1Geographic range size and how it changes through time is one of the fundamental ecological and evolutionary characteristics of a species, and a strong predictor of extinction risk. However, the measurement of range size remains a substantial challenge. Indeed, there is significant confusion in the literature as to how this should be done, particularly in the context of the distinction between the fundamentally different concepts of extent of occurrence (EOO) and area of occupancy (AOO), and the use of these quantities, including in assessments of the threat status of species. 2Here we review the different approaches to determining the geographic distributions of species, the measurement of their range sizes, the relationships between the two, and other difficulties posed by range size measurement (especially those of range discontinuities when measuring EOO, and spatial scale when measuring AOO). 3We argue that it is important to (i) distinguish the estimation of the distribution of a species from the measurement of its geographic range size; (ii) treat measures of EOO and AOO as serving different purposes, rather than regarding them as more or less accurate ways of measuring range size; and (iii) measure EOO including discontinuities in habitat or occupancy. 4Synthesis and applications. With the availability and collation of extensive data sets on species occurrences, a rapidly increasing number of studies are investigating geographic range size, and particularly how various measures of range size predict macroecological patterns and inform assessments of the conservation status of species and areas. The distinction between EOO and AOO is becoming blurred in many contexts, but most particularly in that of threatened species assessments for Red Listing. Continued progress in these fields demands greater clarity in the meaning and derivation of measures of geographic range size. The two principal measures serve different purposes, and should not be regarded as alternatives that simply differ in accuracy. [source]


Herb layer changes (1954-2000) related to the conversion of coppice-with-standards forest and soil acidification

APPLIED VEGETATION SCIENCE, Issue 2 2009
Lander Baeten
Abstract Question: Did the composition of the herb layer of a deciduous forest on loamy soils sensitive to soil acidification change between 1954 and 2000? How are these change related to the abandonment of traditional coppice-with-standards forest management and increased soil acidification? Location: Central Belgium (Europe). Methods: Twenty semi-permanent phytosociological quadrats from an ancient deciduous forest (Meerdaal forest) were carefully selected out of a total of 70 plots dating from 1954 and were revisited in 2000. Species composition and soil pH H2O were recorded using an analogous methodology. The studied period coincides with a period of forest conversion from coppice-with-standards towards a high forest structure and with an increase in acidifying and eutrophying deposition. Results: Between 1954 and 2000, species composition of the herb layer changed significantly. Redundancy analysis pointed to increased shade resulting from shifts in cover and species composition of the shrub and tree layer as the main driving force. Soil acidity increased and the majority of plots entered the aluminium buffer range, which potentially affected herb layer composition. Observations at the species level, especially a strong decrease in cover of the vernal species Anemone nemorosa supported this hypothesis. Conclusions: Our results show significant shifts in the forest herb layer in less than five decades. These shifts were related to an alteration in the traditional forest management regime and increased soil acidity. Whereas the effect of a changed management regime can be mitigated, soil acidification is less reversible. Testing the generality of these patterns on more extensive data sets is certainly needed. [source]


Rinneite, K3Na[FeCl6], at 293, 84 and 9.5,K

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 6 2000
Brian N. Figgis
The crystal structure of tripotassium sodium hexa­chloro­ferrate(II) has been determined by X-ray diffraction at 293, 84 and 9.5,K. The accurate and extensive data sets collected should be suitable for charge,density analysis studies. [source]