Home About us Contact | |||
Explosive Compound (explosive + compound)
Selected AbstractsEcotoxicological effects of hexahydro-1,3,5-trinitro-1,3,5-triazine on soil microbial activities,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2001Ping Gong Abstract Although hexahydro-1,3,5-trinitro-1,3,5-triazine (also called RDX or hexogen) is a potentially toxic explosive compound that persists in soil, its ecotoxicological effects on soil organisms have rarely been assessed. In this study, two uncontaminated garden soils were spiked with 10 to 12,500 mg RDX/kg dry soil. Soil microbial activities, i.e., potential nitrification, nitrogen fixation, dehydrogenase, basal respiration, and substrate-induced respiration were chosen as bioindicators and were determined after 1-, 4-, and 12-weeks of exposure. Experimental results indicate that RDX showed significant inhibition (up to 36% of control) on indigenous soil microbial communities over the period of this study. All five bioindicators responded similarly to the RDX challenge. The length of exposure also affected the microbial toxicity of RDX, with 12-week exposure exerting more significant effects than the shorter exposure periods, suggesting that soil microorganisms might become more vulnerable to RDX when exposure is extended. The estimated lowest observable adverse effect concentration of RDX was 1,235 mg/kg. No biodegradation products of RDX were detected at all three sampling times. Compared with 2,4,6-trinitrotoluene (TNT), RDX is less toxic to microbes, probably because of its resistance to biodegradation under aerobic conditions, which precludes metabolic activation of nitro groups. [source] Field analyses of RDX and TCE in groundwater during a GCW pilot studyREMEDIATION, Issue 1 2002Andrew C. Elmore Contaminant concentrations in groundwater are typically analyzed using traditional laboratory analytical procedures approved by the Environmental Protection Agency (EPA) or state regulatory agencies. The use of off-site laboratories provides very high-quality water quality data at a relatively high cost in terms of time and money. Yet there are many instances when it is desirable to have water quality data measured in the field. The field methods for measuring water quality typically cost much less than the corresponding laboratory methods. However, the usability of the field data may be uncertain when the results are qualitatively compared to duplicate laboratory results. Groundwater samples collected during a groundwater circulation well pilot study were analyzed using field kits to measure concentrations of trichloroethylene (TCE) and the explosive compound known as RDX. A subset of the samples was split for duplicate laboratory analysis. Linear regression analysis and relative percent difference analysis were performed on the duplicate results to evaluate the comparability of the field and laboratory data. The data analyses were also used to evaluate the concept that the field kits were more accurate for specific concentration ranges, as well as the concept the field kit results would improve as field personnel gained experience with the field analysis procedures. © 2002 Wiley Periodicals, Inc. [source] Best Available Treatment Technologies Applied to Groundwater Circulation WellsREMEDIATION, Issue 3 2002Andrew Curtis Elmore Groundwater circulation wells (GCWs) are a quasi-in-situ method for remediating groundwater in areas where remediation techniques that limit the water available for municipal, domestic, industrial, or agricultural purposes are inappropriate. The inherently resource-conservative nature of groundwater circulation wells is also philosophically appealing in today's culture, which is supportive of green technologies. Groundwater circulation wells involve the circulation of groundwater through a dual-screen well, with treatment occurring between the screens. The wells are specifically designed so that one well screen draws in groundwater and the second returns the groundwater after it has been treated within the well. Historically, the treatment has been performed with specialized equipment proprietary to GCW vendors. Two full-scale pilot systems at a formerly used Defense Superfund site in Nebraska used best available technologies for treatment components. A multiple-tray, low-profile air stripper typically used for pump-and-treat remediation systems was successfully adapted for the GCW pilot system located in a trichloroethylene (TCE) hot spot. An ultraviolet water disinfection system was successfully adapted for the GCW pilot system located in a hot spot contaminated with the explosive compound hexhydro-1,3,5-trinitro-1,3,5-triazine (RDX). The pilot systems showed that GCW technology is competitive with a previously considered pump-and-treat alternative for focused extraction, and the regulatory community was supportive of additional GCW applications. A remedial design for the site includes 12 more GCW systems to complete focused remediation requirements. © 2002 Wiley Periodicals, Inc. [source] Uptake and biotransformation of 2,4,6-trinitrotoluene (TNT) by microplantlet suspension culture of the marine red macroalga Portieria hornemanniiBIOTECHNOLOGY & BIOENGINEERING, Issue 3 2006Octavio Cruz-Uribe Abstract Microplantlets of the marine red macroalga Portieria hornemannii efficiently removed the explosive compound 2,4,6-trinitrotoluene (TNT) from seawater. Photosynthetic, axenic microplantlets (1.2 g FW/L) were challenged with enriched seawater medium containing dissolved TNT at concentrations of 1.0, 10, and 50 mg/L. At 22°C and initial TNT concentrations of 10 mg/L or less, TNT removal from seawater was 100% within 72 h, and the first-order rate constant for TNT removal ranged from 0.025 to 0.037 L/gFW h under both illuminated conditions (153 µE/m2s, 14:10 LD photoperiod) and dark conditions. Two immediate products of TNT biotransformation, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dintrotoluene, were identified in the liquid culture medium, with a maximum material balance recovery of 29 mole%. Only trace levels of these products and residual TNT were found within the fresh cell biomass. Removal of TNT by P. hornemannii microplantlets at initial concentrations of 1.0 or 10 mg/L did not affect the respiration rate. At an initial TNT concentration of 10 mg/L, net photosynthesis decreased towards zero, commensurate with the removal of dissolved TNT from seawater, whereas at an initial TNT concentration of 1.0 mg/L, the net photosynthesis rate was not affected. © 2005 Wiley Periodicals, Inc. [source] Vapor phase transport of unexploded ordnance compounds through soilsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2002Raghunathan Ravikrishna Abstract Unexploded ordnance(UXO) is a source of concern at several U.S. Department of Defense(DOD) sites. Localization of munitions and fate and transport of the explosive compounds from these munitions are a major issue of concern. A set of laboratory experiments were conducted in specially designed flux chambers to measure the evaporative flux of three explosive compounds (2,4-dinitrotoluene, 2,6-dinitrotoluene, and 1,3-dinitrobenzene) from three different soils. The effect of different soil moisture contents, the relative humidity of air contacting the soil surface, and soil temperature on the chemical fluxes were evaluated. A diffusion model was used to describe the chemical transport mechanism in the soil pore air. The soil-air partition constant was treated as a fit parameter in the model because of the uncertainty in the a priori estimation. The model predicts the qualitative trends of the experimental fluxes satisfactorily. Under extremely dry conditions, the flux decreased more rapidly than that predicted by the model. The fluxes from soils at 24°C were higher than those at 14°C, indicating a larger volatilization driving force at the higher temperature. [source] Electronic Structure of Binary Phosphoric and Arsenic TriazidesEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2006Zeng Xiaoqing Abstract Two highly explosive binary triazides of the group 15 elements P(N3)3 and As(N3)3 have been obtained in the gas phase through the heterogeneous reaction of PCl3 and AsCl3, respectively with AgN3 at room temperature. The electronic structures of both triazides have been characterized by photoelectron spectroscopy, combined with quantum chemical calculations. This represents the first electronic study of covalent triazides. The first experimental vertical ionization potentials for P(N3)3 and As(N3)3 are 9.74 and 9.98 eV, with the contribution primarily from the lone pairs of the azido moiety and the arsenic atom, respectively. The results indicate the relative "isolation" of azido moieties in triazides and less stability of these highly explosive compounds in comparison to monoazides and diazides. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] |