Explosives

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Explosives

  • high explosive

  • Terms modified by Explosives

  • explosive compound
  • explosive growth
  • explosive radiation

  • Selected Abstracts


    The Effect of Cook-Off on the Bulk Permeability of a Plastic Bonded Explosive

    PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 5 2006
    Guillermo Terrones
    Abstract Plastic bonded explosives when exposed to prolonged heating environments undergo a variety of changes that affect their bulk chemical, thermophysical, and mechanical properties. During slow heating conditions, referred to as cook-off, the thermal behavior of the polymeric binder plays an important role in the transformations of these composite energetic materials. The recently introduced Darcian flow hypothesis for PBX-9501 implies that, during preignition, temperature gradients will lead to pressure gradients which in turn will drive convection of decomposition gases throughout the explosive, thus affecting ignition time and location. Here, we focus on the cook-off behavior of PBX-9501 and investigate its effects on bulk permeability to gases produced as a result of thermal decomposition. The concept of Darcian convection through porous media is defined and illustrated in detail by the derivation of the governing equations for a permeameter. Based on a systematic analysis involving: 1) our current understanding about binder behavior as a function of temperature, 2) the physics of the gas permeameter apparatus, 3) the concept of liquid drainage by gas, and 4) the experimental record of four permeameter experiments with cooked PBX-9501, we conclude that samples heated up to 186,°C were not permeable in the Darcy-flow sense. [source]


    Electrochemical Sensing of Explosives

    ELECTROANALYSIS, Issue 4 2007
    Joseph Wang
    Abstract This article reviews recent advances in electrochemical sensing and detection of explosive substances. Escalating threats of terrorist activities and growing environmental concerns have generated major demands for innovative field-deployable tools for detecting explosives in a fast, sensitive, reliable and simple manner. Field detection of explosive substances requires that a powerful analytical performance be coupled to miniaturized low-cost instrumentation. Electrochemical devices offer attractive opportunities for addressing the growing explosive sensing needs. The advantages of electrochemical systems include high sensitivity and selectivity, speed, a wide linear range, compatibility with modern microfabrication techniques, minimal space and power requirements, and low-cost instrumentation. The inherent electroactivity of nitroaromatic, nitramine and nitroester compounds makes them ideal candidates for electrochemical detection. Recent activity in various laboratories has led to the development of disposable sensor strips, novel electrode materials, submersible remote sensors, and electrochemical detectors for microchip (,Lab-on-Chip') devices for on-site electrochemical detection of explosive substances. The attractive behavior of these electrochemical monitoring systems makes them very promising for addressing major security and environmental problems. [source]


    Detection of Explosives in Hair Using Ion Mobility Spectrometry

    JOURNAL OF FORENSIC SCIENCES, Issue 3 2008
    Jimmie C. Oxley Ph.D.
    Abstract:, Conventional explosives 2,4,6-trinitrotoluene (TNT), nitroglycerin (NG), and ethylene glycol dinitrate (EGDN) sorbed to hair can be directly detected by an ion mobility spectrometer (IMS) in E-mode (for explosives). Terrorist explosive, triacetone triperoxide (TATP), difficult to detect by IMS in E-mode, was detected in N-mode (for narcotics). Three modes of sample introduction to IMS vapor desorption unit were used: (i) placement of hair directly into the unit, (ii) swabbing of hair and placement of swabs (i.e., paper GE-IMS sample traps) into the unit, and (iii) acetonitrile extracts of hair positioned on sample traps and placed into the unit. TNT, NG, and EGDN were detected in E-mode by all three sample introduction methods. TATP could only be detected by the acetonitrile extraction method after exposure of the hair to vapor for 16 days because of lower sensitivity. With standard solutions, TATP detection in E-mode required about 10 times as much sample as EGDN (3.9 ,g compared with 0.3 ,g). IMS in N-mode detected TATP from hair by all three modes of sample introduction. [source]


    Particle Characteristics of Trace High Explosives: RDX and PETN,

    JOURNAL OF FORENSIC SCIENCES, Issue 2 2007
    Jennifer R. Verkouteren M.S.
    ABSTRACT: The sizes of explosives particles in fingerprint residues produced from C-4 and Semtex-1A were investigated with respect to a fragmentation model. Particles produced by crushing crystals of RDX and PETN were sized by using scanning electron microscopy, combined with image analysis, and polarized light microscopy was used for imaging and identifying explosive particles in fingerprint residues. Crystals of RDX and PETN fragment in a manner that concentrates mass in the largest particles of the population, which is common for a fragmentation process. Based on the fingerprints studied, the particle size to target for improving mass detection in fingerprint residues by ion mobility spectrometry (IMS) is ,10 ,m in diameter. Although particles smaller than 10 ,m in diameter have a higher frequency, they constitute <20% of the total mass. Efforts to improve collection efficiency of explosives particles for detection by IMS, or other techniques, must take into consideration that the mass may be concentrated in a relatively few particles that may not be homogeneously distributed over the fingerprint area. These results are based on plastic-bonded explosives such as C-4 that contain relatively large crystals of explosive, where fragmentation is the main process leading to the presence of particles in the fingerprint residues. [source]


    Initiation of Explosives & Pyrotechnic Materials, Jean-René Duguet

    PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 4 2010
    Paul WanningerArticle first published online: 28 JUL 2010
    No abstract is available for this article. [source]


    Physical Properties of Conventional Explosives Deduced from Radio Frequency Emissions

    PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 6 2009
    Jeremiah Harlin
    Abstract Los Alamos National Laboratory collected broadband radio frequency (RF) electric field change measurements from multiple detonations of high explosives (HE). Three types of HE were used: small cylinders of flake TNT, solid TNT, and PBX-9501. Low frequency signals (<80,MHz) were shot-to-shot repeatable and occurred within the first 100,,s at measured amplitudes of about 2,V m,1 at 35, m distance. High frequency signals (>290,MHz) occurred later, were an order of magnitude lower in signal strength, and were not repeatable. There is a positive correlation between the maximum electric field change and the shock velocity of the HE. The amount of free charge produced in the explosion estimated from the first RF pulse is between 10 and 150,,C. This implies a weakly ionized plasma with temperatures between 2600 and 2900,K. [source]


    Separation and Determination of PETN and TNT by HPTLC

    PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 1 2009
    Marzieh Chaloosi
    Abstract This article was published in Early View with DOI 10.1002/prep.200800012 , what is wrong. It has appeared with the correct DOI 10.1002/prep.200900012 , in Propellants, Explosives, Pyrotechnics 2009 (34) issue 1/2009 on pp 50-52. [source]


    Molecular Dynamics Simulations of Polymer-Bonded Explosives (PBXs): Modeling, Mechanical Properties and their Dependence on Temperatures and Concentrations of Binders

    PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 5 2007
    Jijun Xiao
    Abstract Two models, i.e. "covering" and "cutting" models, for the polymer-bonded explosives (PBXs) were proposed for different researching aspects. Used for choosing polymeric binders, the "covering" models are mainly applied to find the relations of temperatures and concentrations respectively with elastic properties of the PBXs. The "cutting" model is especially used to describe the highly anisotropic behavior of 1,3,5-triamino-2,4,6-trinitrobenzene crystals (TATB). These models were realized by using molecular dynamics methods. It is found that the ductility of crystalline TATB can be effectively improved by blending fluorine-containing polymers in small amounts. The moduli for the PBXs decrease with increase in temperature and concentration of binders. Different crystalline surfaces interacting with the same polymer binder have different modulus-decreasing effects due to the highly anisotropic behavior of TATB. The modulus-decreasing effect for different crystalline surfaces ranking order is (010),(100)>(001). [source]


    Optical Pyrometry of Fireballs of Metalized Explosives

    PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 3 2006
    Samuel Goroshin
    Abstract Fast-response optical diagnostics (a time-integrated spectrometer and two separate fast-response three-color pyrometers) are used to record the transient visible radiation emitted by a fireball produced when a condensed explosive is detonated. Measurement of the radiant intensity, in several narrow wavelength bands, is used to estimate the temperature of the condensed products within the fireball. For kg-scale conventional oxygen-deficient homogeneous TNT and nitromethane explosive charges, the radiant intensity reaches a maximum typically after tens of milliseconds, but the measured fireball temperature remains largely constant for more than 100,ms, at a value of about 2,000,K, consistent with predictions using equilibrium thermodynamics codes. When combustible metal particles (aluminum, magnesium or zirconium) are added to the explosive, reaction of the particles enhances the radiant energy and the fireball temperature is increased. In this case the fireball temperatures are lower than equilibrium predictions, but are consistent with measurements of particle temperature in single particle ignition experiments. [source]


    Calculation of the Energy of Explosives with a Partial Reaction Model.

    PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 1 2006
    Comparison with Cylinder Test Data
    Abstract The energy delivered by explosives is described by means of the useful expansion work along the isentrope of the detonation products. A thermodynamic code (W-DETCOM) is used, in which a partial reaction model has been implemented. In this model, the reacted fraction of the explosive in the detonation state is used as a fitting factor so that the calculated detonation velocity meets the experimental value. Calculations based on such a model have been carried out for a number of commercial explosives of ANFO and emulsion types. The BKW (Becker-Kistiakowsky-Wilson) equation of state is used for the detonation gases with the Sandia parameter set (BKWS). The energy delivered in the expansion (useful work) is calculated, and the values obtained are compared with the Gurney energies from cylinder test data at various expansion ratios. The expansion work values obtained are much more realistic than those from an ideal detonation calculation and, in most cases, the values predicted by the calculation are in good agreement with the experimental ones. [source]


    Effect of Scale and Confinement on Gap Tests for Liquid Explosives

    PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 5 2003
    François-Xavier Jetté
    Abstract The factors influencing initiation of detonation in gap tests for liquid explosives are investigated experimentally. A calibrated donor charge (nitromethane) and PMMA attenuator disk arrangement are used to transmit shocks of known strength (2,10,GPa) into a test explosive of nitromethane sensitized with 5% diethylenetriamine. The test explosive is contained in capsules of different wall materials (PVC, Teflon, aluminum), and the dimensions of the charges vary from 25,mm to 100,mm in diameter. For the small-scale charges, the presence of the confining wall of the test capsule is seen to have a pronounced effect on the detonation initiation. Certain wall materials (PVC, Teflon) exhibit a multi-valued critical gap thickness, meaning that a weaker shock may result in initiation while a stronger shock does not. The effect of the wall materials could not be correlated with their acoustic or shock impedance, and the only way to eliminate these effects was to make the diameter of the test charge larger than the donor charge. When the size of the donor charge was increased, the critical pressure required for initiation decreased. These results could be correlated to "ideal" shock initiation experiments that use flyer plates as shock sources assuming that lateral rarefactions quench detonation initiation if they reach the central axis of the charge before the onset of detonation is complete. [source]


    Titelbild: Supersensitive Detection of Explosives by Silicon Nanowire Arrays (Angew. Chem.

    ANGEWANDTE CHEMIE, Issue 38 2010
    38/2010)
    TNT und andere Explosivstoffe werden in Luft durch Anordnungen von Siliciumnanodrähten erkannt, die mit Monoschichten eines elektronenreichen Aminosilans modifiziert sind. F. Patolsky et,al. beschreiben diese Funktionseinheiten in ihrer Zuschrift auf S.,6982,ff.: Die elektronenarmen Moleküle des Explosivstoffs werden über einen Ladungstransfer an die Monoschicht gebunden, was einen schnellen und markierungsfreien Nachweis der Explosivstoffe bis hinab zu 0.1-femtomolarer Konzentration (1×10,6,ppt) ermöglicht. Bildgestaltung durch Tremani. [source]


    Supersensitive Detection of Explosives by Silicon Nanowire Arrays,

    ANGEWANDTE CHEMIE, Issue 38 2010
    Yoni Engel
    Chip als Spürnase: Empfindlicher denn je lassen sich Explosivstoffe mit Siliciumnanodraht-Feldeffekttransistor-Sensoranordnungen nachweisen, die mit Monoschichten eines elektronenreichen Aminosilans modifiziert sind und Komplexe mit den Analyten bilden (siehe Bild). Diese Nano-,Spürnasen" bemerken TNT-Konzentrationen von nur 1×10,6,ppt und sind somit Spürhunden und allen anderen bekannten Nachweismethoden für Explosivstoffe überlegen. [source]


    Agglomeration of NTO on the surface of HMX particles in water-NMP solvent

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 1 2008
    Kwang-Joo Kim
    Abstract A sensitive explosive was coated with a less sensitive explosive in order to improve stability while maintaining explosion performance. Agglomeration of 3-nitro-1,2,4-triazole-5-one (NTO) on the surface of cyclotetramethylene tetranitramine (HMX) crystals in water- N -methyl-2-pyrrolidone (NMP) solvent was performed by cooling crystallization. Phenomena for coating by crystallization and agglomeration were studied by in-situ measurement. The agglomeration kinetic for the coating of NTO on HMX crystals was correlated with the 3rd power of the solution supersaturation and the 2nd power of the number of the suspended particles. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    The Rapid Rise of Supermarkets?

    DEVELOPMENT POLICY REVIEW, Issue 2 2006
    W. Bruce Traill
    A series of articles, many of them published in this journal, have charted the rapid spread of supermarkets in developing and middle-income countries and forecast its continuation. In this article, the level of supermarket penetration (share of the retail food market) is modelled quantitatively on a cross-section of 42 countries for which data could be obtained, representing all stages of development. GDP per capita, income distribution, urbanisation, female labour force participation and openness to inward foreign investment are all significant explanators. Projections to 2015 suggest significant but not explosive further penetration; increased openness and GDP growth are the most significant factors. [source]


    Toxicity of oral exposure to 2,4,6-trinitrotoluene in the western fence lizard (Sceloporus occidentalis),

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2008
    Craig A. McFarland
    Abstract Contamination of the soil with the explosive 2,4,6-trinitrotoluene (TNT) has been found at military sites, many of which are habitats used by reptiles. To provide data useful in assessing ecological risk for reptilian species, acute, subacute, and subchronic oral toxicity studies were conducted with the western fence lizard (Sceloporus occidentalis). Oral median lethal dose (LD50) values for TNT in corn oil were 1,038 and 1,579 mg/kg of body weight for male and female lizards, respectively. Overt signs of toxicity included chromaturia, abdominal enlargement, and tremors. A 14-d subacute study followed in which male lizards were orally dosed with TNT (corn oil) at 0, 33, 66, 132, 263, 525, and 1,050 mg/kg of body weight each day. Clinical signs of toxicity, while similar to the LD50 study, were more subtle and noted in lizards receiving TNT amounts of at least 66 mg/kg/d. Chromaturia was an early consistent sign, often preceding the onset of adverse effects. Male lizards in the 60-d subchronic study were dosed at 0, 3, 15, 25, 35, and 45 mg/kg/d with nearly complete survival (>90%) for lizards in all treatments. Changes in food consumption and body weight were observed at 35 and 45 mg/kg/d. Alterations in hematological end points; blood chemistries (albumin, total protein, alkaline phosphatase, calcium); kidney, spleen, and liver weights; and adverse histopathology were observed in lizards exposed at 25 to 45 mg/kg/d. Testosterone concentration, sperm count, and motility were variable between treatments. Although not significant, incidences of hypospermia and testicular atrophy were observed in some individuals. Together, these data suggest a lowest-observed-adverse effect level of 25 mg/kg/d and a no-observed-adverse effect level of 15 mg/kg/d in S. occidentalis. [source]


    Dose-related effects following oral exposure of 2,4-dinitrotoluene on the western fence lizard, Sceloporus occidentalis

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2008
    Jamie G. Suski
    Abstract 2,4-dintitrotoluene (2,4-DNT) is an explosive frequently found in the soil of military installations. Because reptiles can be common on these sites, ecological risk assessments for compounds such as 2,4-DNT could be improved with toxicity data specific to reptiles. Western fence lizards, Sceloporus occidentalis, were used to develop a laboratory toxicity model for reptiles. A hierarchical approach was used; acute to subchronic studies were conducted to provide toxicity data relevant to short- and long-term exposures. First, a modified median lethal dose (LD50) study was conducted on male and female lizards using a stage-wise probit model. The LD50 was 577 mg/kg for female and 380 mg/kg for male lizards. Subsequently, a subacute experiment was conducted to further assess 2,4-DNT toxicity to male lizards and to define exposure levels for a longer term, subchronic study. The subchronic study was conducted for 60 consecutive days; male lizards were exposed to 0, 9, 15, 25, 42, 70 mg/kg/d. Dose-dependent mortality was observed in the three highest dose groups (25, 42, and 70 mg/kg/d); all other animals survived the study duration. Benchmark dose model calculations based on mortality indicated a 5% effect level of 15.8 mg/kg/d. At study termination, a gross necropsy was performed, organ weights were taken, and blood was collected for clinical and hematological analysis. Body weight, kidney weight, food consumption, postdose observations, and blood chemistries all were found to be significantly different from controls at doses above 9 mg/kg/d. Also, preliminary results suggest behavioral observations, and reduced food consumption may be a sensitive indicator of toxicity. The present study indicates Sceloporus occidentalis is suitable for evaluating toxicity of compounds to reptilian species. [source]


    Toxicological characterization of 2,4,6-trinitrotoluene, its transformation products, and two nitramine explosives

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2007
    Judith Neuwoehner
    Abstract The soil and groundwater of former ordnance plants and their dumping sites have often been highly contaminated with the explosive 2,4,6-trinitrotoluene (2,4,6-TNT) leading to a potential hazard for humans and the environment. Further hazards can arise from metabolites of transformation, by-products of the manufacturing process, or incomplete combustion. This work examines the toxicity of polar nitro compounds relative to their parent compound 2,4,6-TNT using four different ecotoxicological bioassays (algae growth inhibition test, daphnids immobilization test, luminescence inhibition test, and cell growth inhibition test), three genotoxicological assays (umu test, NM2009 test, and SOS Chromotest), and the Ames fluctuation test for detection of mutagenicity. For this study, substances typical for certain steps of degradation/transformation of 2,4,6-TNT were chosen for investigation. This work determines that the parent compounds 2,4,6-TNT and 1,3,5-trinitrobenzene are the most toxic substances followed by 3,5-dinitrophenol, 3,5-dinitroaniline and 4-amino-2-nitrotoluene. Less toxic are the direct degradation products of 2,4,6-TNT like 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-amino-4,6-dinitrotoluene, and 4-amino-2,6-dinitrotoluene. A weak toxic potential was observed for 2,4,6-trinitrobenzoic acid, 2,4-diamino-6-nitrotoluene, 2,4-dinitrotoluene-5-sulfonic acid, and 2,6-diamino-4-nitrotoluene. Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and hexahydro-1,3,5-trinitro-1,3,5-triazine show no hint of acute toxicity. Based on the results of this study, we recommend expanding future monitoring programs of not only the parent substances but also potential metabolites based on conditions at the contaminated sites and to use bioassays as tools for estimating the toxicological potential directly by testing environmental samples. Site-specific protocols should be developed. If hazardous substances are found in relevant concentrations, action should be taken to prevent potential risks for humans and the environment. Analyses can then be used to prioritise reliable estimates of risk. [source]


    Influence of dietary 2,4,6-trinitrotoluene exposure in the northern bobwhite (Colinus virginianus)

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2002
    Robert M. Gogal Jr.
    Abstract The risk to wildlife from exposure to the explosive, 2,4,6-trinitrotoluene (TNT) has been a concern at numerous military installations where it has been found in the soil. To date, no published data are available describing effects of TNT exposure in an avian species. Subchronic dietary exposure to TNT was therefore evaluated in a species of management concern at military installations, the northern bobwhite (Colinus virginianus). Adult male and female quail (n = 5/sex/dose) were given commercial feed containing 3,000, 1,500, 750, and 100 mg/kg TNT for 90 d following the determination of an acute lethal dose and a 14-d range finding study. Dietary TNT intake caused a dose-dependent decrease in total red blood cell counts, packed cell volume, total plasma protein, blood prolymphocytes, and blood lymphocytes. An increased trend in late apoptotic/necrotic blood leukocytic cells was also observed in TNT-exposed birds, as was hemosiderosis in the liver. With the exception of hemosiderosis, these trends were statistically significant yet of questionable biological significance. Since treatment-related responses in this preliminary study were variable, a conservative interpretation is suggested. However, since these treatments had concentrations that were a log-fold or more than doses in similar studies using mammals, these data suggest that northern bobwhite are less sensitive to oral exposures of TNT than mammals. [source]


    Living Yeast Cells as a Controllable Biosynthesizer for Fluorescent Quantum Dots

    ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
    Ran Cui
    Abstract There are currently some problems in the field of chemical synthesis, such as environmental impact, energy loss, and safety, that need to be tackled urgently. An interdisciplinary approach, based on different backgrounds, may succeed in solving these problems. Organisms can be chosen as potential platforms for materials fabrication, since biosystems are natural and highly efficient. Here, an example of how to solve some of these chemical problems through biology, namely, through a novel biological strategy of coupling intracellular irrelated biochemical reactions for controllable synthesis of multicolor CdSe quantum dots (QDs) using living yeast cells as a biosynthesizer, is demonstrated. The unique fluorescence properties of CdSe QDs can be utilized to directly and visually judge the biosynthesis phase to fully demonstrate this strategy. By such a method, CdSe QDs, emitting at a variety of single fluorescence wavelengths, can be intracellularly, controllably synthesized at just 30°C instead of at 300°C with combustible, explosive, and toxic organic reagents. This green biosynthetic route is a novel strategy of coupling, with biochemical reactions taking place irrelatedly, both in time and space. It involves a remarkable decrease in reaction temperature, from around 300 °C to 30 °C and excellent color controllability of CdSe photoluminescence. It is well known that to control the size of nanocrystals is a mojor challenge in the biosynthesis of high-quality nanomaterials. The present work demonstrates clearly that biological systems can be creatively utilized to realize controllable unnatural biosynthesis that normally does not exist, offering new insights for sustainable chemistry. [source]


    Lithospheric structure of an active backarc basin: the Taupo Volcanic Zone, New Zealand

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2006
    Antony Harrison
    SUMMARY Seismic data from both explosive and earthquake sources have been used to model the crustal and upper-mantle velocity structure beneath the Taupo Volcanic Zone (TVZ), an active backarc basin in central North Island, New Zealand. Volcanic sediments with P -wave velocities of 2.0,3.5 km s,1 reach a maximum thickness of 3 km beneath the central TVZ. Underlying these sediments to 16 km depth is material with velocities of 5.0,6.5 km s,1, interpreted as quartzo-feldspathic crust. East and west of the TVZ, crust with similar velocities is found to depths of 30 and 25 km, respectively. Beneath the TVZ, material with P -wave velocities of 6.9,7.3 km s,1 is found from 16 to 30 km depth and is interpreted as heavily intruded or underplated lower crust. The base of the crust at 30 km depth under the TVZ is marked by a strong seismic reflector, interpreted as the Moho. Modelling of arrivals from deep (>40 km) earthquakes near the top of the underlying subducting Pacific Plate reveals a region with low mantle velocities of 7.4,7.8 km s,1 beneath the crust of the TVZ. This region of low mantle velocities is best explained by the presence of partially hydrated upper mantle, resulting from dehydration of hydrous minerals (e.g. serpentinite) carried down by the underlying subducting plate. Within the lower crust beneath the TVZ, a region of high (0.34) Poisson's ratio is observed, indicating the presence of at least 1 per cent partial melt. This melt probably fractionates and assimilates crustal material before some of it migrates into the upper crust, where it provides a source for the voluminous rhyolitic magmas of the TVZ. [source]


    Using an airgun array in a land reservoir as the seismic source for seismotectonic studies in northern China: experiments and preliminary results

    GEOPHYSICAL PROSPECTING, Issue 4 2008
    Yong Chen
    ABSTRACT This paper reports the field setup and preliminary results of experiments utilizing an airgun array in a reservoir in north China for a seismotectonic study. Commonly used in offshore petroleum resource exploration, the airgun source was found to be more useful than a traditional explosive source for large-scale and long offset land seismic surveys. The airgun array, formed by four 1,500 in3 airguns (a total of 6,000 in3 in volume) was placed at a depth of 6,9 m into the reservoir to generate the pressure impulse. No direct evidence was found that the airgun source adversely affected the fish in the reservoir. The peak ground acceleration recorded on the top of the reservoir dam 100 m away was 17.8 gal in the horizontal direction; this is much less than the designed earthquake-resistance threshold of 125 gal for this dam. The energy for one shot of this airgun array is about 6.68 MJ, equivalent to firing a 1.7 kg explosive. The seismic waves generated by the airgun source were recorded by receivers of the regional seismic networks and a temporary wide-angle reflection and refraction profile formed by 100 short-period seismometers with the maximum source-receiver offset of 206 km. The seismic wave signature at these long-offset stations is equivalent to that generated by a traditional blast source in a borehole with a 1,000,2,000 kg explosive. Preliminary results showed clear seismic phases from refractions from the multi-layer crustal structures in the north China region. Forward modelling using numerical simulation confirms that the seismic arrivals are indeed from lower crustal interfaces. The airgun source is efficient, economical, environmentally friendly and suitable for being used in urbanized areas. It has many advantages over an explosive source for seismotectonic studies such as the high repeatability that is supreme for stacking to improve signal qualities. The disadvantage is that the source is limited to existing lakes or reservoirs, which may restrict experimental geometry. [source]


    Combined Treatment of Perchlorate and RDX in Ground Water Using a Fluidized Bed Reactor

    GROUND WATER MONITORING & REMEDIATION, Issue 3 2007
    Mark E. Fuller
    A bench-scale study was conducted to assess the effectiveness of biological treatment of comingled perchlorate and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in ground water using fluidized bed reactors (FBRs). In addition, the ability of FBRs to treat low concentrations of perchlorate was examined. Pilot-scale FBRs were fed either acetic acid or molasses as an electron donor to facilitate simultaneous perchlorate and RDX reduction. The acetic acid-fed FBR consistently removed perchlorate from an influent level of 100 ,g/L to below 6 ,g/L, and values below the method detection limit of 1 ,g/L occurred approximately 70% of the time. RDX breakthrough from all FBRs was minimal due to sorption of the explosive on the granulated activated carbon media, but mass balance calculations indicated that more than 99.5% of the total RDX entering the acetic acid-fed FBR was biologically degraded. Approximately 80% of the RDX fed to the control FBR (i.e., no substrate addition) was accounted for at the end of the study; the remainder was assumed to have been degraded. Molasses was much less effective than acetic acid as an electron donor for treatment of perchlorate and RDX. This work demonstrates that combined treatment of perchlorate and RDX is feasible using FBR technology, and that very low levels of perchlorate (less than 100 ,g/L) can be effectively treated in an FBR. [source]


    Nitroglycerin Headache and Nitroglycerin-Induced Primary Headaches From 1846 and Onwards: A Historical Overview and an Update

    HEADACHE, Issue 3 2009
    Peer C. Tfelt-Hansen MD
    Nitroglycerin (NTG) (glyceryl trinitrate) was synthesized by the Italian chemist Ascanio Sobrero in Paris in 1846. A very unstable explosive, Alfred Nobel while working on explosives, combined it with Kiselguhr and patented it as dynamite in 1867. NTG was introduced in 1879 in medicine in the treatment of angina pectoris by the English doctor William Murrell. NTG-induced headache was quickly recognized as an important adverse event both in the industrial use of NTG, where it was used to produce dynamite, as well as in the use of NTG as drug. This review traces the evolution of our understanding of NTG headache. [source]


    Coupled damage and plasticity modelling in transient dynamic analysis of concrete

    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 1 2002
    Fabrice Gatuingt
    Abstract In a concrete structure subjected to an explosion, for example a concrete slab, the material is subjected to various states of stress which lead to many modes of rupture. Closer to the explosive, a state of strong hydrostatic compression is observed. This state of stress produces an irreversible compaction of the material. Away from the zone of explosion, confinement decreases and the material undergoes compression with a state of stress, which is slightly triaxial. Finally, the compression wave can be reflected on a free surface and becomes a tensile wave, which by interaction with the compression wave, produces scabbing. We present, in this paper, a model aimed at describing these three failure modes. It is based on visco-plasticity and rate dependent damage in which a homogenization method is used in order to include the variation of the material porosity due to compaction. The model predictions are compared with several experiments performed on the same concrete. Computations of split Hopkinson tests on confined concrete, a tensile test with scabbing, and an explosion on a concrete slab are presented. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Simulation of high velocity concrete fragmentation using SPH/MLSPH

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 10 2003
    T. Rabczuk
    Abstract The simulation of concrete fragmentation under explosive loading by a meshfree Lagrangian method, the smooth particle hydrodynamics method (SPH) is described. Two improvements regarding the completeness of the SPH-method are examined, first a normalization developed by Johnson and Beissel (NSPH) and second a moving least square (MLS) approach as modified by Scheffer (MLSPH). The SPH-Code is implemented in FORTRAN 90 and parallelized with MPI. A macroscopic constitutive law with isotropic damage for fracture and fragmentation for concrete is implemented in the SPH-Code. It is shown that the SPH-method is able to simulate the fracture and fragmentation of concrete slabs under contact detonation. The numerical results from the different SPH-methods are compared with the data from tests. The good agreement between calculation and experiment suggests that the SPH-program can predict the correct maximum pressure as well as the damage of the concrete slabs. Finally the fragment distributions of the tests and the numerical calculations are compared. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    A numerical scheme for strong blast wave driven by explosion

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2006
    Kaori Kato
    Abstract After the detonation of a solid high explosive, the material has extremely high pressure keeping the solid density and expands rapidly driving strong shock wave. In order to simulate this blast wave, a stable and accurate numerical scheme is required due to large density and pressure changes in time and space. The compressible fluid equations are solved by a fractional step procedure which consists of the advection phase and non-advection phase. The former employs the Rational function CIP scheme in order to preserve monotone signals, and the latter is solved by interpolated differential operator scheme for achieving the accurate calculation. The procedure is categorized into the fractionally stepped semi-Lagrangian. The accuracy of our scheme is confirmed by checking the one-dimensional plane shock tube problem with 103 times initial density and pressure jump in comparison with the analytic solution. The Sedov,Taylor blast wave problem is also examined in the two-dimensional cylindrical coordinate in order to check the spherical symmetry and the convergence rates. Two- and three-dimensional simulations for the blast waves from the explosion in the underground magazine are carried out. It is found that the numerical results show quantitatively good agreement with the experimental data. Copyright © 2006 John Wiley & Sons, Ltd. [source]


    Rheological studies on energetic thermoplastic elastomers

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2010
    T. S. Reddy
    Abstract Energetic thermoplastic elastomers containing energetic groups, such as azido, nitrato, nitro, and so forth, are emerging as attractive binder systems for advanced solid rocket propellants. Poly[3,3-bis(Azidomethyl) oxetane (BAMO)-co-3-azidomethyl-3-methyl oxetane (AMMO)] comprising hard crystalline BAMO segment and the soft/amorphous AMMO segment in various molar ratios (80 : 20, 50 : 50 and 20 : 80) were synthesized during the present work. The homo polymers namely Poly-BAMO and Poly-AMMO were also synthesized. All the polymers and copolymers were characterized by spectral and thermal methods. They were found to be thermally stable. The most promising 80 : 20 copolymer softened at 56°C with Tg of ,36°C. Rheological studies were also carried out to determine their suitability as a binder in explosive and propellant formulations. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    Theoretical investigation of an energetic fullerene derivative

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 12 2010
    Bisheng Tan
    Abstract A self-consistent estimation method for the thermochemical properties of N -methyl-3-(2,,4,,6,-trinitrobenzene)-fulleropyrrolidine (MTNBFP) is presented. This method is based on enthalpy of formation (,fH) and enthalpy of combustion obtained from BLYP/DNP calculations of the total energies and frequencies for MTNBFP. The enthalpy of formation was calculated by an optimized set of isodesmic reactions given the available experimental ,fH of relative compounds. MTNBFP has a high enthalpy of formation, 2782.2 kJ/mol. Detonation velocity and detonation pressure were also presented in terms of Kamlet and Jacobs equations. Drop hammer impact sensitivity tests and blasting point per 5 s tests indicate MTNBFP may be a potential candidate primary explosive. To understand the test results well, we proposed a series of chemical reaction mechanisms and interpreted the relationship between impact sensitivity and electronic structures from the viewpoint of nitro group charge, electrostatic potential, and vibrational modes. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010 [source]


    An ab initio study of intermolecular interactions of nitromethane dimer and nitromethane trimer

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 3 2003
    Jinshan Li
    Abstract Different geometries of nitromethane dimer and nitromethane trimer have been fully optimized employing the density functional theory B3LYP method and the 6-31++G** basis set. Three-body interaction energy has been obtained with the ab initio supermolecular approach at the levels of MP2/6-31++G**//B3LYP/6-31++G** and MP2/aug-cc-pVDZ//B3LYP/6-31++G**. The internal rotation of methyl group induced by intermolecular interaction has been observed theoretically. For the optimized structures of nitromethane dimer, the strength of CH,ON H-bond ranges from ,9.0 to ,12.4 kJ mol,1 at the MP2/aug-cc-pVDZ//B3LYP/6-31++G** level, and the B3LYP method underestimates the interaction strength compared with the MP2 method, while MP2/6-31++G**//B3LYP/6-31++G** calculated ,EC is within 2.5 kJ mol,1 of the corresponding value at the MP4(SDTQ)/6-31G**//B3LYP/6-31++G** level. The analytic atom,atom intermolecular potential has been successfully regressed by using the MP2/6-31++G**//B3LYP/6-31++G** calculated interaction energies of nitromethane dimer. For the optimized structures of nitromethane trimer the three-body interaction energies occupy small percentage of corresponding total binding energies, but become important for the compressed nitromethane explosive. In addition, it has been discovered that the three-body interaction energy in the cyclic nitromethane trimer is more and more negative as intermolecular distances decrease from 2.2 to 1.7 Å. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 345,352, 2003 [source]