Explicit Representation (explicit + representation)

Distribution by Scientific Domains


Selected Abstracts


Earnings Quality and the Equity Risk Premium: A Benchmark Model,

CONTEMPORARY ACCOUNTING RESEARCH, Issue 3 2006
Kenton K. Yee
Abstract This paper solves a model that links earnings quality to the equity risk premium in an infinite-horizon consumption capital asset pricing model (CAPM) economy. In the model, risk-averse traders hold diversified portfolios consisting of risk-free bonds and shares of many risky firms. When constructing their portfolios, traders rely on noisy reported earnings and dividend payments for information about the risky firms. The main new element of the model is an explicit representation of earnings quality that includes hidden accrual errors that reverse in subsequent periods. The model demonstrates that earnings quality magnifies fundamental risk. Absent fundamental risk, poor earnings quality cannot affect the equity risk premium. Moreover, only the systematic (undiversified) component of earnings-quality risk contributes to the equity risk premium. In contrast, all components of earnings-quality risk affect earnings capitalization factors. The model ties together consumption CAPM and accounting-based valuation research into one price formula linking earnings quality to the equity risk premium and earnings capitalization factors. [source]


Postglacial topographic evolution of glaciated valleys: a stochastic landscape evolution model

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 11 2005
Simon J. Dadson
Abstract The retreat of valley glaciers has a dramatic effect on the stability of glaciated valleys and exerts a prolonged influence on the subsequent fluvial sediment transport regime. We have studied the evolution of an idealized glaciated valley during the period following retreat of ice using a numerical model. The model incorporates a stochastic process to represent deep-seated landsliding, non-linear diffusion to represent shallow landsliding and an approximation of the Bagnold relation to represent fluvial sediment transport. It was calibrated using field data from several recent surveys within British Columbia, Canada. We present ensemble model results and compare them with results from a deterministic linear-diffusion model to show that explicit representation of large landslides is necessary to reproduce the morphology and channel network structure of a typical postglacial valley. Our model predicts a rapid rate of fluvial sediment transport following deglaciation with a subsequent gradual decline, similar to that inferred for Holocene time. We also describe how changes in the model parameters affect the estimated magnitude and duration of the paraglacial sediment pulse. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2000
Akitoshi Hanazawa
Abstract In the inferior temporal (IT) cortex of monkeys, which has been shown to play a critical role in colour discrimination, there are neurons sensitive to a narrow range of hues and saturation. By contrast, neurons in the retina and the parvocellular layer of the lateral geniculate nucleus (pLGN) encode colours in a way that does not provide explicit representation of hue or saturation, and the process by which hue- and saturation-selectivity is elaborated remains unknown. We therefore tested the colour-selectivity of neurons in the primary visual cortex (V1) and compared it with those of pLGN and IT neurons. Quantitative analysis was performed using a standard set of colours, systematically distributed within the CIE (Commission Internationale de l'Eclairage)-xy chromaticity diagram. Selectivity for hue and saturation was characterized by analysing response contours reflecting the overall distribution of responses across the chromaticity diagram. We found that the response contours of almost all pLGN neurons were linear and broadly tuned for hue. Many V1 neurons behaved similarly; nonetheless, a considerable number of V1 neurons had clearly curved response contours and were selective for a narrow range of hues or saturation. The relative frequencies of neurons exhibiting various selectivities for hue and saturation were remarkably similar in the V1 and IT cortex, but were clearly different in the pLGN. Thus, V1 apparently plays a very important role in the conversion of colour signals necessary for generating the elaborate colour selectivity observed in the IT cortex. [source]


Recovering acoustic reflectivity using Dirichlet-to-Neumann maps and left- and right-operating adjoint propagators

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2005
M. W. P. Dillen
SUMMARY Constructing an image of the Earth subsurface from acoustic wave reflections has previously been described as a recursive downward redatuming of sources and receivers. Most of the methods that have been presented involve reflectivity and propagators associated with one-way wavefield components. In this paper, we consider the reflectivity relation between two-way wavefield components, each a solution of a Helmholtz equation. To construct forward and inverse propagators, and a reflection operator, the invariant-embedding technique is followed, using Dirichlet-to-Neumann maps. Employing bilinear and sesquilinear forms, the forward- and inverse-scattering problems, respectively, are treated analogously. Through these mathematical constructs, the relationship between a causality radiation condition and symmetry, with respect to a bilinear form, is associated with the requirement of an anticausality radiation condition with respect to a sesquilinear form. Using reciprocity, sources and receivers are redatumed recursively to the reflector, employing left- and right-operating adjoint propagators. The exposition of the proposed method is formal, that is numerical applications are not derived. The key to applications lies in the explicit representation, characterization and approximation of the relevant operators (symbols) and fundamental solutions (path integrals). Existing constructive work which could be applied to the proposed method are referred to in the text. [source]


Being liked activates primary reward and midline self-related brain regions

HUMAN BRAIN MAPPING, Issue 4 2010
Christopher G. Davey
Abstract The experience of being liked is a key social event and fundamental to motivating human behavior, though little is known about its neural underpinnings. In this study, we examined the experience of being liked in a group of 15- to 24-year-old: a cohort for whom forming friendships has a great degree of salience, and for whom the explicit representation of relationships is familiar from their frequent use of social networking technologies. Study participants (n = 19) were led to believe that other participants had formed an opinion on their likability based on their appearance in a photograph, and during fMRI scanning viewed the photographs of people who had purportedly responded favorably to them (alongside photographs of control participants). Results indicated that being liked activated primary reward- and self-related regions, including the nucleus accumbens, midbrain (in an area corresponding to the ventral tegmentum), ventromedial prefrontal cortex, posterior cingulate cortex (including retrosplenial cortex), amygdala, and insula/opercular cortex. Participants showed greater activation of ventromedial prefrontal cortex and amygdala in response to being liked by people that they regarded highly compared to those they regarded less so. Finally, being liked by the opposite compared to the same gender activated the right caudal orbitofrontal cortex and right anterior insula: areas important for the representation of primary somatic rewards. This study demonstrates that neural response to being liked has features that are consistent with response to other rewarding events, but it has additional features that reflect its intrinsically interpersonal character. Hum Brain Mapp, 2010. © 2009 Wiley-Liss, Inc. [source]


Modelling stream flow for use in ecological studies in a large, arid zone river, central Australia

HYDROLOGICAL PROCESSES, Issue 6 2005
Justin F. Costelloe
Abstract Australian arid zone ephemeral rivers are typically unregulated and maintain a high level of biodiversity and ecological health. Understanding the ecosystem functions of these rivers requires an understanding of their hydrology. These rivers are typified by highly variable hydrological regimes and a paucity, often a complete absence, of hydrological data to describe these flow regimes. A daily time-step, grid-based, conceptual rainfall,runoff model was developed for the previously uninstrumented Neales River in the arid zone of northern South Australia. Hourly, logged stage data provided a record of stream-flow events in the river system. In conjunction with opportunistic gaugings of stream-flow events, these data were used in the calibration of the model. The poorly constrained spatial variability of rainfall distribution and catchment characteristics (e.g. storage depths) limited the accuracy of the model in replicating the absolute magnitudes and volumes of stream-flow events. In particular, small but ecologically important flow events were poorly modelled. Model performance was improved by the application of catchment-wide processes replicating quick runoff from high intensity rainfall and improving the area inundated versus discharge relationship in the channel sections of the model. Representing areas of high and low soil moisture storage depths in the hillslope areas of the catchment also improved the model performance. The need for some explicit representation of the spatial variability of catchment characteristics (e.g. channel/floodplain, low storage hillslope and high storage hillslope) to effectively model the range of stream-flow events makes the development of relatively complex rainfall,runoff models necessary for multisite ecological studies in large, ungauged arid zone catchments. Grid-based conceptual models provide a good balance between providing the capacity to easily define land types with differing rainfall,runoff responses, flexibility in defining data output points and a parsimonious water-balance,routing model. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Effects of land-cover changes on the hydrological response of interior Columbia River basin forested catchments

HYDROLOGICAL PROCESSES, Issue 13 2002
James R. VanShaar
Abstract The topographically explicit distributed hydrology,soil,vegetation model (DHSVM) is used to simulate hydrological effects of changes in land cover for four catchments, ranging from 27 to 1033 km2, within the Columbia River basin. Surface fluxes (stream flow and evapotranspiration) and state variables (soil moisture and snow water equivalent) corresponding to historical (1900) and current (1990) vegetation are compared. In addition a sensitivity analysis, where the catchments are covered entirely by conifers at different maturity stages, was conducted. In general, lower leaf-area index (LAI) resulted in higher snow water equivalent, more stream flow and less evapotranspiration. Comparisons with the macroscale variable infiltration capacity (VIC) model, which parameterizes, rather than explicitly represents, topographic effects, show that runoff predicted by DHSVM is more sensitive to land-cover changes than is runoff predicted by VIC. This is explained by model differences in soil parameters and evapotranspiration calculations, and by the more explicit representation of saturation excess in DHSVM and its higher sensitivity to LAI changes in the calculation of evapotranspiration. Copyright © 2002 John Wiley & Sons, Ltd. [source]


ASSET PRICING WITH NO EXOGENOUS PROBABILITY MEASURE

MATHEMATICAL FINANCE, Issue 1 2008
Gianluca Cassese
In this paper, we propose a model of financial markets in which agents have limited ability to trade and no probability is given from the outset. In the absence of arbitrage opportunities, assets are priced according to a probability measure that lacks countable additivity. Despite finite additivity, we obtain an explicit representation of the expected value with respect to the pricing measure, based on some new results on finitely additive measures. From this representation we derive an exact decomposition of the risk premium as the sum of the correlation of returns with the market price of risk and an additional term, the purely finitely additive premium, related to the jumps of the return process. We also discuss the implications of the absence of free lunches. [source]


Iterated Neumann problem for the higher order Poisson equation

MATHEMATISCHE NACHRICHTEN, Issue 1-2 2006
H. Begehr
Abstract Rewriting the higher order Poisson equation ,nu = f in a plane domain as a system of Poisson equations it is immediately clear what boundary conditions may be prescribed in order to get (unique) solutions. Neumann conditions for the Poisson equation lead to higher-order Neumann (Neumann- n ) problems for ,nu = f . Extending the concept of Neumann functions for the Laplacian to Neumann functions for powers of the Laplacian leads to an explicit representation of the solution to the Neumann- n problem for ,nu = f . The representation formula provides the tool to treat more general partial differential equations with leading term ,nu in reducing them into some singular integral equations. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Remarks on Duality in Graph Spaces of First-Order Linear Operators

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2006
Max JensenArticle first published online: 4 DEC 200
Graph spaces provide a setting alternative to Sobolev spaces and BV spaces, which is suitable for the analysis of first-order linear boundary value problems such as Friedrichs systems. Besides investigations of the well-posedness of the continuous problem there is also an increasing interest in the error analysis of finite element methods within a graph space framework. In this text we elucidate various methods for an explicit representation of dual spaces of graph spaces. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The cumulus-capped boundary layer.

THE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 618 2006
I: Modelling transports in the cloud layer
Abstract Scalar-flux budgets have been obtained from large-eddy simulations (LESs) of the cumulus-capped boundary layer. Parametrizations of the terms in the budgets are discussed, and two parametrizations for the transport term in the cloud layer are proposed. It is shown that these lead to two models for scalar transports by shallow cumulus convection. One is equivalent to the subsidence detrainment form of convective tendencies obtained from mass-flux parametrizations of cumulus convection. The second is a flux-gradient relationship that is similar in form to the non-local parametrizations of turbulent transports in the dry-convective boundary layer. Using the fluxes of liquid-water potential temperature and total water content from the LES, it is shown that both models are reasonable diagnostic relations between fluxes and the vertical gradients of the mean fields. The LESs used in this study are for steady-state convection and it is possible to treat the fluxes of conserved thermodynamic variables as independent, and ignore the effects of condensation. It is argued that a parametrization of cumulus transports in a model of the cumulus-capped boundary layer should also include an explicit representation of condensation. A simple parametrization of the liquid-water flux in terms of conserved variables is also derived. © Crown Copyright, 2006 [source]


An Activation-Based Model of Sentence Processing as Skilled Memory Retrieval

COGNITIVE SCIENCE - A MULTIDISCIPLINARY JOURNAL, Issue 3 2005
Richard L. Lewis
Abstract We present a detailed process theory of the moment-by-moment working-memory retrievals and associated control structure that subserve sentence comprehension. The theory is derived from the application of independently motivated principles of memory and cognitive skill to the specialized task of sentence parsing. The resulting theory construes sentence processing as a series of skilled associative memory retrievals modulated by similarity-based interference and fluctuating activation. The cognitive principles are formalized in computational form in the Adaptive Control of Thought,Rational (ACT,R) architecture, and our process model is realized in ACT,R. We present the results of 6 sets of simulations: 5 simulation sets provide quantitative accounts of the effects of length and structural interference on both unambiguous and garden-path structures. A final simulation set provides a graded taxonomy of double center embeddings ranging from relatively easy to extremely difficult. The explanation of center-embedding difficulty is a novel one that derives from the model' complete reliance on discriminating retrieval cues in the absence of an explicit representation of serial order information. All fits were obtained with only 1 free scaling parameter fixed across the simulations; all other parameters were ACT,R defaults. The modeling results support the hypothesis that fluctuating activation and similarity-based interference are the key factors shaping working memory in sentence processing. We contrast the theory and empirical predictions with several related accounts of sentence-processing complexity. [source]


Parameterizing redistribution and sublimation of blowing snow for hydrological models: tests in a mountainous subarctic catchment

HYDROLOGICAL PROCESSES, Issue 18 2009
Matthew K. MacDonald
Abstract Model tests of blowing snow redistribution and sublimation by wind were performed for three winters over a small mountainous sub-Arctic catchment located in the Yukon Territory, Canada, using a physically based blowing snow model. Snow transport fluxes were distributed over multiple hydrological response units (HRUs) using inter-HRU snow redistribution allocation factors (SR). Three SR schemes of varying complexity were evaluated. Model results show that end-of-winter snow accumulation can be most accurately simulated using a physically based blowing snow model when SR values are established when taking into account wind direction and speed and HRU aerodynamic characteristics, along with the spatial arrangement of the HRUs in the catchment. With the knowledge that snow transport scales approximately with the fourth power of wind speed (u4), SR values can be (1) established according to the predominant u4 direction and magnitude over a simulation period or (2) can change at each time step according to a measured wind direction. Unfortunately, wind direction data were available only for one of the three winters, so the latter scheme was tested only once. Although the aforementioned SR schemes produced different results, model efficiency was of similar merit. The independent effects of topography and vegetation were examined to assess their importance on snow redistribution modelling over mountainous terrain. Snow accumulation was best simulated when including explicit representations of both landscape vegetation (i.e. vegetation height and density) and topography (i.e. wind exposure). There may be inter-basin differences in the relative importance of model representations of topography and vegetation. Copyright © 2009 John Wiley & Sons, Ltd. [source]