Home About us Contact | |||
Exposure Protocols (exposure + protocol)
Selected AbstractsRole of Myocardial Contractility and Autonomic Control in the Hypotensive Response to a Limited Access Ethanol Paradigm in SHRsALCOHOLISM, Issue 6 2007Mahmoud M. El-Mas Background: Previous experimental studies that evaluated the chronic hemodynamic effect of ethanol employed the continuous exposure protocol of ethanol, which does not mimic the pattern of alcohol consumption in humans. This study dealt with the long-term hemodynamic and cardiovascular autonomic effects of ethanol, in a limited-access regimen in telemetered spontaneously hypertensive rats (SHRs). Methods: Changes in blood pressure (BP), heart rate (HR), myocardial contractility (dP/dtmax), and spectral cardiovascular autonomic profiles during the ethanol exposure period (2.5 or 5% w/v, 8 h/d, 8:30 am till 4:30 pm) were followed for 12 weeks. Results: Compared with control pair-fed SHRs, body weight and urine output, osmolality, and potassium levels were decreased in SHRs receiving 5% but not 2.5% ethanol. Blood pressure showed progressive falls during ethanol-feeding periods with a maximum effect observed at week 5. The peak hypotensive effect was maintained thereafter in SHRs receiving 5% ethanol in contrast to steady rises in BP in the 2.5% ethanol group to near-control levels by the conclusion of the study. Heart rate was slightly but significantly increased by ethanol 5% whereas dP/dtmax showed persistent reductions. Power spectral analysis showed that ethanol attenuated the baroreflex gain of HR as suggested by the reductions in index ,, the spectral index of spontaneous baroreflex sensitivity (BRS). Conclusions: It is concluded that limited access ethanol drinking in SHRs elicited hypotension that was concentration dependent and mediated, at least partly, through reductions in myocardial contractility. Baroreflex sensitivity attenuation by ethanol appeared to have limited the tachycardic response to ethanol and perhaps its capacity to offset the evoked hypotension. [source] Evaluation of the visibility and the course of the mandibular incisive canal and the lingual foramen using cone-beam computed tomographyCLINICAL ORAL IMPLANTS RESEARCH, Issue 7 2010Nikos Makris Abstract Objectives: To assess the visibility and the course of the incisive canal and the visibility and the location of the lingual foramen using cone-beam computed tomography (CBCT). Methods: In total, 100 CBCT examinations of patients for preoperative planning were used for this study. The examinations were taken using the NewTom 3G CBCT unit, applying a standardized exposure protocol. Image reconstruction from the raw data was performed using the NewTom software. Three experts were asked to assess the visibility of the incisive canal using a four-point rating scale. The position of the incisive canal was recorded in relation to the lower, buccal and lingual border of the mandible using the application provided by the CBCT software. Results: The incisive canal was definitely visible in 83.5% of the scans and the mean endpoint was approximately 15 mm anterior to the mental foramen. The mean distance from the lower border of the mandible was 11.5 mm and its course was closer to the buccal border of the mandible in 87% of the scans. The lingual foramen was definitely visible in 81% of the scans. Conclusions: The high detection rate of the incisive canal and the lingual foramen in the anterior region of the mandible using CBCT indicates the potentional high preoperative value of CBCT scan for surgical procedures in the anterior mandible. To cite this article: Makris N, Stamatakis H, Syriopoulos K, Tsiklakis K, van der Stelt PF. Evaluation of the visibility and the course of the mandibular incisive canal and the lingual foramen using cone-beam computed tomography. Clin. Oral Impl. Res. 21, 2010; 766,771. doi: 10.1111/j.1600-0501.2009.01903.x [source] ,-tocopherol improves impaired physiology of rat type II pneumocytes isolated from experimentally injured lungsEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 11 2000B. Müller Background Oxidant stress delivered by nitrogen dioxide (NO2) inhalation impairs the function of extracellular surfactant as well as surfactant phospholipid metabolism in type II pneumocytes. Because protection against oxidant stress is important to normal lung function, the lung contains a variety of antioxidants, including vitamin E. Whether administration of this antioxidant during NO2 inhalation attenuates NO2 -induced alterations in phospholipid metabolism in type II pneumocytes has not been studied. Methods We exposed rats to identical NO2 body doses (720 p.p.m. x h) using continuous, intermittent, or repetitive protocols. During exposure periods, the animals received daily intramuscular injections of vitamin E (25 mg kg,1). We isolated type II pneumocytes from NO2 -exposed rats and evaluated them for cell yield and viability, as well as for synthesis and secretion of phosphatidylcholine (PC) as measures of surfactant metabolism. Results The yield of type II pneumocytes was significantly elevated from animals that had been exposed continuously to NO2 whereas in intermittently and repeatedly exposed rats, cell yield was similar to yield from control animals. Viability of the isolated cells was similar in controls and all NO2 exposure protocols. Vitamin E treatment of the NO2 -exposed rats neither changed cell yield nor cell viability. Phospholipid de novo synthesis, as estimated by choline incorporation into PC, was increased most after continuous NO2 inhalation whereas in the other conditions there was only a slight increase. Vitamin E administration further increased phospholipid synthesis; this difference reached statistical significance only in the case of intermittent NO2 exposure. Secretion of phosphatidylcholine from type II cells was only reduced after continuous NO2 inhalation and administration of the antioxidant reduced the impairment. Conclusion Because vitamin E appears to preserve the ability of type II pneumocytes isolated from NO2 -exposed rats to synthesize and secrete surfactant lipid, we conclude that administration of vitamin E may mitigate NO2 -induced lung injury. [source] Toxicity Evaluation for Safe Use of Nanomaterials: Recent Achievements and Technical ChallengesADVANCED MATERIALS, Issue 16 2009Saber M. Hussain Abstract Recent developments in the field of nanotechnology involving the synthesis of novel nanomaterials (NM) have attracted the attention of numerous scientists owing to the possibility of degradative perturbations in human health. This Review evaluates previous investigations related to NM toxicity studies using biological models and describes the limitations that often prevent toxicologists from identifying whether NM pose a real hazard to human health. One major limitation to assess toxicity is the characterization of the NM prior to and after exposure to living cells or animals. The most relevant physicochemical characteristics of NM are: size, surface chemistry, crystallinity, morphology, solubility, aggregation tendency, homogeneity of dispersions, and turbidity. All of these properties need to be assessed in order to determine their contribution to toxicity. Due to the lack of appropriate methods to determine the physicochemical nature of nanoparticles in biological systems, the exact nature of NM toxicity is not fully described or understood at this time. This Review emphasizes the need for state-of-the-art physicochemical characterization, the determination of appropriate exposure protocols and reliable methods for assessing NM internalization and their kinetics in living organisms. Once these issues are addressed, optimal experimental conditions could be established in order to identify if NM pose a threat to human health. Multidisciplinary research between materials scientists and life scientists should overcome these limitations in identifying the true hazards of NM. [source] Influence of 1 and 25 Hz, 1.5 mT magnetic fields on antitumor drug potency in a human adenocarcinoma cell line,BIOELECTROMAGNETICS, Issue 8 2002M.J. Ruiz-Gómez Abstract The resistance of tumor cells to antineoplastic agents is a major obstacle during cancer chemotherapy. Many authors have observed that some exposure protocols to pulsed electromagnetic fields (PEMF) can alter the efficacy of anticancer drugs; nevertheless, the observations are not clear. We have evaluated whether a group of PEMF pulses (1.5 mT peak, repeated at 1 and 25 Hz) produces alterations of drug potency on a multidrug resistant human colon adenocarcinoma (HCA) cell line, HCA-2/1cch. The experiments were performed including (a) exposures to drug and PEMF exposure for 1 h at the same time, (b) drug exposure for 1 h, and then exposure to PEMF for the next 2 days (2 h/day). Drugs used were vincristine (VCR), mitomycin C (MMC), and cisplatin. Cell viability was measured by the neutral red stain cytotoxicity test. The results obtained were: (a) The 1 Hz PEMF increased VCR cytotoxicity (P,<,0.01), exhibiting 6.1% of survival at 47.5 ,g/ml, the highest dose for which sham exposed groups showed a 19.8% of survival. For MMC at 47.5 ,g/ml, the % of survival changed significantly from 19.2% in sham exposed groups to 5.3% using 25 Hz (P,<,0.001). Cisplatin showed a significant reduction in the % of survival (44.2,39.1%, P,<,0.05) at 25 Hz and 47.5 ,g/ml, and (b) Minor significant alterations were observed after nonsimultaneous exposure of cells to PEMF and drug. The data indicate that PEMF can induce modulation of cytostatic agents in HCA-2/1cch, with an increased effect when PEMF was applied at the same time as the drug. The type of drug, dose, frequency, and duration of PEMF exposure could influence this modulation. Bioelectromagnetics 23:578,585, 2002. © 2002 Wiley-Liss, Inc. [source] |