Exercise Bout (exercise + bout)

Distribution by Scientific Domains


Selected Abstracts


The decrease in electrically evoked force production is delayed by a previous bout of stretch,shortening cycle exercise

ACTA PHYSIOLOGICA, Issue 1 2010
S. Kamandulis
Abstract Aim:, Unaccustomed physical exercise with a large eccentric component is accompanied by muscle damage and impaired contractile function, especially at low stimulation frequencies. A repeated bout of eccentric exercise results in less damage and improved recovery of contractile function. Here we test the hypotheses that (1) a prior stretch,shortening cycle (SSC) exercise protects against impaired muscle function during a subsequent bout of SSC exercise and (2) the protection during exercise is transient and becomes less effective as the exercise progresses. Methods:, Healthy untrained men (n = 7) performed SSC exercise consisting of 100 maximal drop jumps at 30 s intervals. The same exercise was repeated 4 weeks later. Peak quadriceps muscle force evoked by electrical stimulation at 15 (P15) and 50 (P50) Hz was measured before exercise, after 10, 25, 50 and 100 jumps as well as 1 and 24 h after exercise. Results:, P15 and P50 were higher during the initial phase of the repeated bout compared with the first exercise bout, but there was no difference between the bouts at the end of the exercise periods. P15 and P50 were again larger 24 h after the repeated bout. The P15/P50 ratio during exercise was not different between the two bouts, but it was higher after the repeated bout. Conclusion:, A prior bout of SSC exercise temporarily protects against impaired contractile function during a repeated exercise bout. The protection can again be seen after exercise, but the underlying mechanism then seems to be different. [source]


Impact of carbohydrate supplementation during endurance training on glycogen storage and performance

ACTA PHYSIOLOGICA, Issue 2 2009
L. Nybo
Abstract Aim:, Glucose ingestion may improve exercise endurance, but it apparently also influences the transcription rate of several metabolic genes and it alters muscle metabolism during an acute exercise bout. Therefore, we investigated how chronic training responses are affected by glucose ingestion. Methods:, In previously untrained males performance and various muscular adaptations were evaluated before and after 8 weeks of supervised endurance training conducted either with (n = 8; CHO group) or without (n = 7; placebo) glucose supplementation. Results:, The two groups achieved similar improvements in maximal oxygen uptake and peak power output during incremental cycling (both parameters elevated by 17% on average) and both groups lost ,3 kg of fat mass during the 8 weeks of training. An equal reduction in respiratory exchange ratio (0.02 units) during submaximal exercise was observed in both groups. Beta-hydroxyacyl-CoA-dehydrogenase activity was increased in both groups, however, to a larger extent in the placebo group (45 ± 11%) than CHO (23 ± 9%, P < 0.05). GLUT-4 protein expression increased by 74 ± 14% in the placebo group and 45 ± 14% in CHO (both P < 0.05), while resting muscle glycogen increased (P < 0.05) to a larger extent in the placebo group (96 ± 4%) than CHO (33 ± 2%). Conclusion:, These results show that carbohydrate supplementation consumed during exercise training influences various muscular training adaptations, but improvements in cardiorespiratory fitness and reductions in fat mass are not affected. [source]


Heat shock protein translocation and expression response is attenuated in response to repeated eccentric exercise

ACTA PHYSIOLOGICA, Issue 3 2009
K. Vissing
Abstract Aim:, This study hypothesized that heat shock protein (HSP) translocation and upregulation is more probable to occur after eccentric exercise than after concentric exercise or repeated eccentric exercise. Methods:, Fourteen young, healthy, untrained male subjects completed two bench-stepping exercise bouts with 8 weeks between bouts, and were compared with a control group (n = 6). Muscle biopsies collected from m. vastus lateralis of both legs prior to and at 3 h, 24 h and 7 days after exercise were quantified for mRNA levels and/or for HSP27, ,,-crystallin and inducible HSP70 content in cytosolic and cytoskeletal protein fractions. Results:, The first bout of exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P < 0.05). These responses were attenuated after the repeated eccentric exercise bout (P < 0.05), suggesting a repeated bout adaptation. Increases in inducible HSP70 and HSP27 protein content in cytoskeletal fractions were observed exclusively after eccentric exercise (P < 0.05). For HSP27, an approx. 10-fold upregulation after first-bout eccentric exercise was attenuated to a an approximately fourfold upregulation after the repeated eccentric exercise bout. mRNA levels for HSP70, HSP27 and ,,-crystallin were upregulated within approximately two to fourfold ranges at time points 3 and 24 h post-exercise (P < 0.05). This upregulation was induced exclusively by eccentric exercise but with a tendency to attenuated expression 3 h after the repeated eccentric exercise bout. Conclusion:, Our results show that HSP translocation and expression responses are induced by muscle damaging exercise, and suggest that such HSP responses are closely related to the extent of muscle damage. [source]


The effect of long-term exercise on glucose metabolism and peripheral insulin sensitivity in Standardbred horses

EQUINE VETERINARY JOURNAL, Issue S36 2006
E. de GRAAF-ROELFSEMA
Summary Reasons for performing study: To study the possible long-term effect of improved glucose tolerance in horses after long-term training, as the impact of exercise training on glucose metabolism is still unclear in the equine species. It is not known whether there is a direct long-term effect of training or if the measurable effect on glucose metabolism is the residual effect of the last exercise session. Objectives: To determine the chronic effect on glucose metabolism and peripheral insulin sensitivity of long-term training in horses by use of the euglycaemic hyperinsulinaemic clamp technique. Methods: Eleven Standardbred horses were acclimatised to running on the high-speed treadmill for 4 weeks (Phase 1) followed by training for 18 weeks with an alternating endurance (, 60% HRmax) high intensity training programme (, 80% HRmax) (Phase 2). Training frequency was 4 days/week. At the end of Phase 1, a euglycaemic hyperinsulinaemic clamp was performed 72 h after the last bout of exercise in all horses. At the end of Phase 2, the horses were clamped 24 h or 72 h after the last bout of exercise. Results: Glucose metabolism rate did not change significantly after 18 weeks of training, measured 72 h after the last exercise bout (0.018 ± 0.009 and 0.022 ± 0.006 mmol/kg bwt/min, respectively). Peripheral insulin sensitivity also did not change significantly following training (7.6 ± 5.7 times 10,6 and 8.0 ± 3.1 times 10,6, respectively). The same measurements 24 h after the last bout of exercise showed no significant differences. Conclusions: Results indicated that long-term training in Standardbreds neither changed glucose metabolism or insulin sensitivity 72 h after the last bout of exercise. Potential relevance: The fact that the beneficial effect of increased insulin sensitivity after acute exercise diminishes quickly in horses and no long-term effects on insulin sensitivity after chronic exercise have as yet been found in horses, implies that exercise should be performed on a regular basis in horses to retain the beneficial effect of improved insulin sensitivity. [source]


Recruitment pattern of muscle fibre type during flat and sloped treadmill running in Thoroughbred horses

EQUINE VETERINARY JOURNAL, Issue S36 2006
D. ETO
Summary Reasons for performing the study: There is little information about the muscle fibre recruitment pattern during sloped and flat track running in Thoroughbred horses. Objectives: To examine the glycogen depletion pattern of each muscle fibre type during running on a flat and sloped treadmill. Methods: Thirteen Thoroughbred horses (3,9 years old) were used. They were initially subjected to incremental exercise tests on a treadmill at 10 and 0% inclines in each horse to determine running speed at 90 and 60% VO2max. Needle biopsy samples were obtained from the middle gluteal muscle immediately after the running at 90% VO2max for 4 min and 60% VO2max for 12 min on 10% and 0% inclines treadmill. Four muscle fibre types (Types I, IIA, IIA/IIX, and IIX) were immunohistochemically identified, and optical density of Periodic Acid Schiff staining (OD-PAS) in each fibre type and the glycogen content of the muscle sample were determined by quantitative histochemical and biochemical procedures. Results: The changes in OD-PAS showed that the recruitment of all fibre types were identical after each exercise bout, i.e., 4 min running at 90% VO2max (8.4,9.4 m/sec on 10%, 13.9,14.1 m/sec on 0%), and 12 min running at 60% VO2max (5.4,6.0 m/sec on 10%, 7.9,11.2 m/sec on 0%). No significant differences were found in the recruitment patterns of each muscle fibre type between 10 and 0% inclined exercise bouts at the same exercise intensity. Conclusions: The recruitment pattern of muscle fibre type is mainly determined by exercise intensity (%VO2max) and duration, but not by running speed. Potential relevance: The results of this study indicate the possibility that up-hill running results in the same training effect as faster running on a flat track. [source]


Haematological and respiratory gas changes in horses and mules exercised at altitude (3800 m)

EQUINE VETERINARY JOURNAL, Issue S36 2006
H. M. GREENE
Summary Reason for performing study: Despite the common use of equids as visitors to high altitude mountainous environments, there are a paucity of carefully orchestrated scientific approaches. Further, again as a function of a common perceived advantage of mules over horses in these similar environments there are needs for controlled comparisons between these 2 equids. Objective: To measure haematological and respiratory function in horses and mules at low altitude (225 m), at rest and post exercise. In addition the rate and magnitude of these changes were followed over a 13 day period at high altitude (3800 m) to contrast acclimatisation. Methods: Resting and exercise venous blood samples (1 min post exercise) were obtained from 6 horses and 5 mules housed at 225 m (LA) and then transported to 3800 m (HA) for 13 days. The standardised exercise tests at both LA and HA consisted of trotting (3.0 m/sec) up an incline (6%) for 2 km. Data were analysed with repeated measures ANOVA (comparison of altitude acclimatisation and species) for changes in haematological and respiratory gases. Results: At low altitude, no group differences were found with both resting (P=0.69) and exercising (P=0.74) heart rates. Resting PCV was 8% lower in the mules (P=0.02) and 20% lower during exercise (P=0.02). Horses had significantly higher 2,3-diphosphoglycerate (2,3-DPG)/g Hb at both rest (P=0.003) and exercise (P=0.03). Exercise at HA increased PCV (P=0.03) in both groups, but the increase was attenuated in the mules compared to horses. The increase with 2,3-DPG/g Hb was expressed at HA in both groups (P=0.001) and was also attenuated in mules (P=0.03). Both groups were alkalotic compared to LA (P=0.001), and there were no group differences (P = 0.95). Conclusion: Of the variables measured, the most notable distinction between species was identified for only PCV and 2,3-DPG with both higher in horses, at both LA and HA. While the attenuated response of PCV in mules for the same exercise might argue for an improved adaptation to altitude, the lower 2,3-DPG might not. Other variables during the exercise bout were not different between species. [source]


Effects of Ischaemia on Subsequent Exercise-Induced Oxygen Uptake Kinetics in Healthy Adult Humans

EXPERIMENTAL PHYSIOLOGY, Issue 2 2002
Michael L. Walsh
Leg muscles were occluded (33 kPa) prior to exercise to determine whether the induced metabolic changes, and reactive hyperaemia upon occlusion release just prior to the exercise, would accelerate the subsequent oxygen consumption (V,O2) response. Eight subjects performed double bouts (6 min duration, 6 min rest in-between) of square wave leg cycle ergometry both below and above their lactate threshold (LT). Prior to exercise, large blood pressure cuffs were put around the upper thighs. Occlusion durations were 0 min (control), 5 min and 10 min. Ischaemia was terminated within 5 s prior to exercise onset. Heart rate, V,O2, ventilatory rate (V,E), electromyogram (EMG) and haemoglobin/myoglobin (Hb/Mb) saturation were recorded continuously. Single exponential modelling demonstrated that, compared to control (time constant = 53.9 ± 13.9 s), ischaemia quickened the V,O2 response (P < 0.05) for the first bout of exercise above LT (time constant = 48.3 ± 14.5 s) but not to any other exercise bout below or above LT. The 3-6 min integrated EMG (iEMG) slope was correlated to the 3-6 min V,O2 slope (r = 0.73). Hb/Mb saturation verified the ischaemia but did not show a consistent relation to the V,O2 time course. Reactive hyperaemia induced a faster V,O2 response for work rates above LT. The effect, while significant, was not large considering the expected favourable metabolic and circulatory changes induced by ischaemia. [source]


The effect of antecedent fatiguing activity on the relationship between perceived exertion and physiological activity during a constant load exercise task

PSYCHOPHYSIOLOGY, Issue 5 2007
Roger Eston
Abstract This study assessed the relationship between the rate of change of the rating of perceived exertion (RPE), physiological activity, and time to volitional exhaustion. After completing a graded exercise test, 10 participants cycled at a constant load equating to 75% of peak oxygen uptake (V, O2peak) to exhaustion. Participants performed two further constant load exercise tests at 75%V, O2peak in a fresh state condition within the next 7 days. The RPE was regressed against time and percentage of the time (%time) to volitional exhaustion in both conditions. Despite a lower respiratory exchange ratio (RER) and higher heart rate at the start of the exercise bout in the fatigued condition, there were no differences in RPE at the onset or completion of exercise. As expected, the rate of increase in RPE was greater in the fatigued condition, but there were no differences when expressed against %time. Results suggest that RPE is set at the start of exercise using a scalar internal timing mechanism, which regulates RPE by altering the gain of the relationship with physiological parameters such as heart rate and RER when these are altered by previous fatiguing exercise. [source]


The acute effects of different whole body vibration amplitudes on the endocrine system of young healthy men: a preliminary study

CLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 6 2006
Marco Cardinale
Summary Whole body vibration (WBV) has been suggested as an alternative form of exercise producing adaptive responses similar to that of resistance training. Very limited information is available on the effects of different vibration parameters on anabolic hormones. In this study, we compared the acute effects of different WBV amplitudes on serum testosterone (T) and insulin growth factor-1 (IGF-1). Nine healthy young recreationally active adult males (age 22 ± 2 years, height 181 ± 6.3 cm, weight 77·4 ± 9·5 kg) voluntarily participated in this randomized controlled (cross-over design) study. The subjects performed 20 sets of 1 min each of WBV exercise in the following conditions: Non-vibration condition (control), low amplitude vibration [low (30 Hz, 1·5 mm peak-to-peak amplitude)] and high amplitude vibration [high (30 Hz, 3 mm peak-to-peak amplitude)]. Blood samples were collected before, after 10 sets, at the end (20th set) and after 24 h of the exercise bout. WBV exercise did not produce significant changes in serum T and IGF-1 either with low or high amplitude when compared with the control condition. The results of this study demonstrate that a single session of WBV exposure with a frequency of 30 Hz and amplitudes of 1·5 and 3 mm does not noticeably alter serum T and IGF-1 levels. [source]


Heat shock protein translocation and expression response is attenuated in response to repeated eccentric exercise

ACTA PHYSIOLOGICA, Issue 3 2009
K. Vissing
Abstract Aim:, This study hypothesized that heat shock protein (HSP) translocation and upregulation is more probable to occur after eccentric exercise than after concentric exercise or repeated eccentric exercise. Methods:, Fourteen young, healthy, untrained male subjects completed two bench-stepping exercise bouts with 8 weeks between bouts, and were compared with a control group (n = 6). Muscle biopsies collected from m. vastus lateralis of both legs prior to and at 3 h, 24 h and 7 days after exercise were quantified for mRNA levels and/or for HSP27, ,,-crystallin and inducible HSP70 content in cytosolic and cytoskeletal protein fractions. Results:, The first bout of exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P < 0.05). These responses were attenuated after the repeated eccentric exercise bout (P < 0.05), suggesting a repeated bout adaptation. Increases in inducible HSP70 and HSP27 protein content in cytoskeletal fractions were observed exclusively after eccentric exercise (P < 0.05). For HSP27, an approx. 10-fold upregulation after first-bout eccentric exercise was attenuated to a an approximately fourfold upregulation after the repeated eccentric exercise bout. mRNA levels for HSP70, HSP27 and ,,-crystallin were upregulated within approximately two to fourfold ranges at time points 3 and 24 h post-exercise (P < 0.05). This upregulation was induced exclusively by eccentric exercise but with a tendency to attenuated expression 3 h after the repeated eccentric exercise bout. Conclusion:, Our results show that HSP translocation and expression responses are induced by muscle damaging exercise, and suggest that such HSP responses are closely related to the extent of muscle damage. [source]


Recruitment pattern of muscle fibre type during flat and sloped treadmill running in Thoroughbred horses

EQUINE VETERINARY JOURNAL, Issue S36 2006
D. ETO
Summary Reasons for performing the study: There is little information about the muscle fibre recruitment pattern during sloped and flat track running in Thoroughbred horses. Objectives: To examine the glycogen depletion pattern of each muscle fibre type during running on a flat and sloped treadmill. Methods: Thirteen Thoroughbred horses (3,9 years old) were used. They were initially subjected to incremental exercise tests on a treadmill at 10 and 0% inclines in each horse to determine running speed at 90 and 60% VO2max. Needle biopsy samples were obtained from the middle gluteal muscle immediately after the running at 90% VO2max for 4 min and 60% VO2max for 12 min on 10% and 0% inclines treadmill. Four muscle fibre types (Types I, IIA, IIA/IIX, and IIX) were immunohistochemically identified, and optical density of Periodic Acid Schiff staining (OD-PAS) in each fibre type and the glycogen content of the muscle sample were determined by quantitative histochemical and biochemical procedures. Results: The changes in OD-PAS showed that the recruitment of all fibre types were identical after each exercise bout, i.e., 4 min running at 90% VO2max (8.4,9.4 m/sec on 10%, 13.9,14.1 m/sec on 0%), and 12 min running at 60% VO2max (5.4,6.0 m/sec on 10%, 7.9,11.2 m/sec on 0%). No significant differences were found in the recruitment patterns of each muscle fibre type between 10 and 0% inclined exercise bouts at the same exercise intensity. Conclusions: The recruitment pattern of muscle fibre type is mainly determined by exercise intensity (%VO2max) and duration, but not by running speed. Potential relevance: The results of this study indicate the possibility that up-hill running results in the same training effect as faster running on a flat track. [source]