Excess Gibbs Energy (excess + gibb_energy)

Distribution by Scientific Domains


Selected Abstracts


Excess Gibbs energy of binary liquid mixtures and the Wong,Sandler postulates

AICHE JOURNAL, Issue 12 2004
W. W. Focke
First page of article [source]


Thermodynamic Properties and Phase Diagram for the System MoO2,TiO2

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2008
K. Thomas Jacob
The activity of molybdenum dioxide (MoO2) in the MoO2,TiO2 solid solutions was measured at 1600 K using a solid-state cell incorporating yttria-doped thoria as the electrolyte. For two compositions, the emf was also measured as a function of temperature. The cell was designed such that the emf is directly related to the activity of MoO2 in the solid solution. The results show monotonic variation of activity with composition, suggesting a complete range of solid solutions between the end members and the occurrence of MoO2 with a tetragonal structure at 1600 K. A large positive deviation from Raoult's law was found. Excess Gibbs energy of mixing is an asymmetric function of composition and can be represented by the subregular solution model of Hardy as follows The temperature dependence of the emf for two compositions is reasonably consistent with ideal entropy of mixing. A miscibility gap is indicated at a lower temperature with the critical point characterized by Tc (K)=1560 and. Recent studies indicate that MoO2 undergoes a transition from a monoclinic to tetragonal structure at 1533 K with a transition entropy of 9.91 J·(mol·K),1. The solid solubility of TiO2 with rutile structure in MoO2 with a monoclinic structure is negligible. These features give rise to a eutectoid reaction at 1412 K. The topology of the computed phase diagram differs significantly from that suggested by Pejryd. [source]


Solution theory model for thermophysical properties of refrigerant/lubricant mixtures

AICHE JOURNAL, Issue 12 2009
Albeiro Restrepo
Abstract A general model for predicting the thermophysical properties of refrigerant/lubricant mixtures has been developed based on applicable theory for the excess Gibbs energy of nonideal solutions. In our approach, flexible thermodynamic forms are chosen to describe the properties of both the gas and liquid phases of refrigerant/lubricant mixtures. After an extensive study of models for describing nonideal liquid effects, the Wohl [3]-suffix equations, which have been extensively used in the analysis of hydrocarbon mixtures, have been developed into a general form applicable to mixtures where one component is a polyolester or alkylbenzene lubricant. We have developed a nonideal solution computer code, based on the Wohl model that predicts dew point or bubble point conditions over a wide range of composition and temperature and includes the calculation of the enthalpy and entropy of refrigerant/lubricant mixtures. Our present analysis includes the thermodynamic properties of an ideal solution mixture and the corrections due to nonideal solution behavior. These nonideal solution corrections are based on analysis of the excess Gibbs energy of the mixture. We find that these nonideal solution corrections are small (<4%) for most refrigerant/lubricant mixtures, except at very low temperatures. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


Thermodynamic modeling of hydrotrope solutions

AICHE JOURNAL, Issue 1 2006
Mandana Akia
Abstract A new model for the excess Gibbs energy of hydrotrope solutions is presented. This model is based on the local composition model by Chen et al. Hydrotropes are usually organic salts that can increase the solubility of organic and inorganic compounds in water. The proposed model has five adjustable parameters; one of them is related to long-range forces, and four of them are related to short-range forces. Long-range forces are modeled by the Pitzer-Debye-Huckel equation. However, in our model, the effect of the molecular solute on the dielectric constant of water has also been considered. Modeling of short-range forces is based on local composition concepts. The model parameters are obtained using experimental data for six hydrotropes with four solutes at different temperatures. The water solubility of molecular solutes in the presence of hydrotropes has been calculated for different systems. Accurate results are obtained. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source]


On the Analyses of Mixture Vapor Pressure Data: The Hydrogen Peroxide/Water System and Its Excess Thermodynamic Functions

CHEMISTRY - A EUROPEAN JOURNAL, Issue 24 2004
Stanley L. Manatt Dr.
Abstract Reported here are some aspects of the analysis of mixture vapor pressure data using the model-free Redlich,Kister approach that have heretofore not been recognized. These are that the pure vapor pressure of one or more components and the average temperature of the complex apparatuses used in such studies can be obtained from the mixture vapor pressures. The findings reported here raise questions regarding current and past approaches for analyses of mixture vapor pressure data. As a test case for this analysis approach the H2O2,H2O mixture vapor pressure measurements reported by Scatchard, Kavanagh, and Tickner (G. Scatchard, G. M. Kavanagh, L. B. Ticknor, J. Am. Chem. Soc.1952, 74, 3715,3720; G. M. Kavanagh, PhD. Thesis, Massachusetts Institute of Technology (USA), 1949) have been used; there is significant recent interest in this system. It was found that the original data is fit far better with a four-parameter Redlich,Kister excess energy expansion with inclusion of the pure hydrogen peroxide vapor pressure and the temperature as parameters. Comparisons of the present results with the previous analyses of this suite of data exhibit significant deviations. A precedent for consideration of iteration of temperature exists from the little-known work of Uchida, Ogawa, and Yamaguchi (S. Uchida, S. Ogawa, M. Yamaguchi, Japan Sci. Eng. Sci.1950, 1, 41,49) who observed significant variations of temperature from place to place within a carefully insulated apparatus of the type traditionally used in mixture vapor pressure measurements. For hydrogen peroxide, new critical constants and vapor pressure,temperature equations needed in the analysis approach described above have been derived. Also temperature functions for the four Redlich,Kister parameters were derived, that allowed calculations of the excess Gibbs energy, excess entropy, and excess enthalpy whose values at various temperatures indicate the complexity of H2O2,H2O mixtures not evident in the original analyses of this suite of experimental results. [source]