Home About us Contact | |||
Excellent Solubility (excellent + solubility)
Selected AbstractsAn Alternative Approach to Constructing Solution Processable Multifunctional Materials: Their Structure, Properties, and Application in High-Performance Organic Light-Emitting DiodesADVANCED FUNCTIONAL MATERIALS, Issue 18 2010Shanghui Ye Abstract A new series of full hydrocarbons, namely 4,4,-(9,9,-(1,3-phenylene)bis(9H -fluorene-9,9-diyl))bis(N,N -diphenylaniline) (DTPAFB), N,N,-(4,4,-(9,9,-(1,3-phenylene)bis(9H -fluorene-9,9-diyl))bis(4,1-phenylene))bis(N -phenylnaphthalen-1-amine) (DNPAFB), 1,3-bis(9-(4-(9H -carbazol-9-yl)phenyl)-9H -fluoren-9-yl)benzene, and 1,3-bis(9-(4-(3,6-di- tert -butyl-9H -carbazol-9-yl)phenyl)-9H -fluoren-9-yl)benzene, featuring a highly twisted tetrahedral conformation, are designed and synthesized. Organic light-emitting diodes (OLEDs) comprising DNPAFB and DTPAFB as hole transporting layers and tris(quinolin-8-yloxy)aluminum as an emitter are made either by vacuum deposition or by solution processing, and show much higher maximum efficiencies than the commonly used N,N,-di(naphthalen-1-yl)- N,N,-diphenylbiphenyl-4,4,-diamine device (3.6 cd A,1) of 7.0 cd A,1 and 6.9 cd A,1, respectively. In addition, the solution processed blue phosphorescent OLEDs employing the synthesized materials as hosts and iridium (III) bis[(4,6-di-fluorophenyl)-pyridinato-N, C2] picolinate (FIrpic) phosphor as an emitter present exciting results. For example, the DTPAFB device exhibits a brightness of 47 902 cd m,2, a maximum luminescent efficiency of 24.3 cd A,1, and a power efficiency of 13.0 lm W,1. These results show that the devices are among the best solution processable blue phosphorescent OLEDs based on small molecules. Moreover, a new approach to constructing solution processable small molecules is proposed based on rigid and bulky fluorene and carbazole moieties combined in a highly twisted configuration, resulting in excellent solubility as well as chemical miscibility, without the need to introduce any solubilizing group such as an alkyl or alkoxy chain. [source] Synthesis and characterization of soluble copolyimides containing chalcone and phosphine oxide moieties in the main chainJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008Wei Wang Abstract The functional diamines 3,3,-diaminochalcone and bis(3-aminophenyl)-3,5-bis(trifluoromethyl)phenyl phosphine oxide were successfully prepared by simple and convenient procedures with short reaction times, and the overall yields were 78 and 70%, respectively. Copolyimides prepared from 3,3,-diaminochalcone, bis(3-aminophenyl)-3,5-bis(trifluoromethyl)phenyl phosphine oxide, and 4,4,-(hexafluoroisopropylidene)diphthalic anhydride exhibited excellent solubility in several organic solvents, such as dimethyl sulfoxide, N,N -dimethylformamide, N -methyl pyrrolidone, tetrahydrofuran, and acetone. They also showed very good thermal stability even up to 450°C for 5% weight loss (by thermogravimetric analysis) in nitrogen and a high glass-transition temperature up to 274°C (by differential scanning calorimetry) in nitrogen. The copolymers' adhesive and photoreactive properties were also investigated, and it was confirmed that the copolyimide containing chalcone and phosphine oxide moieties in the main chain had good adhesiveness and photoreactivity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Experimental and theoretical investigation of a new rapid switching near-infrared electrochromic conjugated polymerJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 18 2010Han-Yu Wu Abstract A new rapid switching near-IR electrochromic conjugated propeller-shape polymer (PBTPAFL) with lower oxidation potential containing a di-triarylamine group was synthesized via Suzuki coupling approach. The observed UV-vis-NIR absorption changes in the PBTPAFL film at various potentials are fully reversible and associated with strong color changes from the original light green to dark green and then to a Prussian blue. Excellent continuous cyclic stability of the electrochromic characteristics with a rapid color switching time 2.58 s and bleaching time 1.76 s was found as well. Compared with P1 and P2, the introduction of more electron-donating propyl phenyl group in the para position of PBTPAFL lowered the oxidative potential and prevented coupling reaction during the electrochromic procedure. The high molecular weight conjugated polymer having high thermal stability with Td10 more than 450 °C has excellent solubility in common organic solvents such as NMP, THF, chloroform, toluene, xylene, and benzene at room temperature (25 °C) due to the propeller-shape structure and long alkyl chain on fluorene. Herein, from the combination of the experimental and computational study, we proposed a mechanism on the basis of the molecular orbital theory to explain the electrochromic oxidation behavior. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3913,3923, 2010. [source] Resistive switching polymer materials based on poly(aryl ether)s containing triphenylamine and 1,2,4-triazole moietiesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 20 2008Kun-Li Wang Abstract A series of poly(aryl ether)s were successfully prepared via aromatic nucleophilic substitution reaction from various bisphenols and a novel bipolar aryl difluoride monomer containing electron-donor triphenylamine and electron-acceptor 1,2,4-triazole moieties. The poly(aryl ether)s exhibited excellent solubility in organic solvents such as dimethylformamide, chloroform, and tetrahydrofuran at room temperature. The poly(aryl ether)s showed high thermal stability with Td10 higher than 500 °C and glass transition temperatures (Tg) higher than 187 °C. The thin films of the poly(aryl ether)s indicated bistable resistive switching behavior with ON/OFF current ratios as high as 103. The switching on and switching off bias voltages of the poly(aryl ether)s were affected by the bisphenol moiety. The good resistive switching behavior of the poly(aryl ether)s made them promising candidates for future nonvolatile memory applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6861,6871, 2008 [source] Synthesis and properties of novel sulfonated polyimides containing binaphthyl groups as proton-exchange membranes for fuel cellsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 2 2007Yuhan Li Abstract A novel sulfonated diamine monomer, 2,2,-bis(p -aminophenoxy)-1,1,-binaphthyl-6,6,-disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30,80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film-forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945,0.161 S/cm) at 20,80 °C in liquid water. The membranes exhibited methanol permeability from 9 × 10,8 to 5 × 10,7 cm2/s at 20 °C, which was much lower than that of Nafion (2 × 10,6cm2/s). The copolymers were thermally stable up to 300 °C. The sulfonated polyimide copolymers with 30,60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 222,231, 2007 [source] Novel organosoluble and colorless poly(ether imide)s based on 3,3-bis[4-(3,4-dicarboxyphenoxy)phenyl]phthalide dianhydride and aromatic bis(ether amine)s bearing pendent trifluoromethyl groupsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 9 2006Chin-Ping Yang Abstract A novel series of colorless and highly organosoluble poly(ether imide)s were prepared from 3,3-bis[4-(3,4-dicarboxyphenoxy)phenyl]phthalide dianhydride with various fluorinated aromatic bis(ether amine)s via a conventional two-stage process that included ring-opening polyaddition to form the poly(amic acid)s followed by cyclodehydration to produce the polymer films. The poly(ether imide)s showed excellent solubility, with most of them dissoluble at a concentration of 10 wt % in amide polar solvents, in ether-type solvents, and even in chlorinated solvents. Their films had a cutoff wavelength between 358 and 373 nm, and the yellowness index ranged from 3.1 to 9.5. The glass-transition temperatures of the poly(ether imide) series were recorded between 237 and 297 °C, the decomposition temperatures at 10% weight loss were all above 494 °C, and the residue was more than 54% at 800 °C in nitrogen. These films showed high tensile strength and also were characterized by higher solubility, lighter color, and lower dielectric constants and moisture absorption than an analogous nonfluorinated polyimide series. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3140,3152, 2006 [source] pH-responsive ampholytic terpolymers of acrylamide, sodium 3-acrylamido-3-methylbutanoate, and (3-acrylamidopropyl)trimethylammonium chloride.JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2004Abstract The solution properties of low-charge-density ampholytic terpolymers of acrylamide, sodium 3-acrylamido-3-methylbutanoate, and (3-acrylamidopropyl)trimethylammonium chloride were studied as functions of the solution pH, ionic strength, and polymer concentration. Terpolymers with low charge densities, large charge asymmetries, or both exhibited excellent solubility in deionized (DI) water, and higher charge density terpolymers were readily dispersible in DI water; however, the higher charge density terpolymer solutions separated into polymer-rich and polymer-poor phases upon standing over time. Charge-balanced terpolymers exhibited antipolyelectrolyte behavior at pH values greater than or equal to the ambient pH (6.5 ± 0.2); the same terpolymers behaved increasingly as cationic polyelectrolytes with decreasing solution pH because of the protonation of the 3-acrylamido-3-methylbutanoate (AMB) repeat units. Unbalanced terpolymers generally exhibited polyelectrolyte behavior, although the effects of intramolecular electrostatic attractions (i.e., polyampholyte effects) on the hydrodynamic volume of the unbalanced terpolymer coils were evident at certain values of the solution pH and salt concentration. The dilute-solution behavior of the terpolymers correlated well with the behavior predicted by several polyampholyte solution theories. In the semidilute regime, solution viscosities increased with increasing terpolymer charge density, and this indicated a significant enhancement of the solution viscosity by intermolecular electrostatic associations. Upon the addition of NaCl, semidilute-solution viscosities tended to decrease because of the disruption of the intermolecular electrostatic associations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3252,3270, 2004 [source] Preparation of aromatic polyimides highly soluble in conventional solventsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 2 2002Wei Huang Abstract Several highly soluble polyimides were synthesized from various aromatic tetracarboxylic dianhydrides and an aromatic diamine containing tert -butyl pendent groups [4,4,-methylenebis(2- tert -butylaniline)]. All the polyimides showed excellent solubility in common solvents such as chloroform, tetrahydrofuran, and dioxane at room temperature. The number-average molecular weight ranged from 3.6 × 104 to 1.3 × 105 according to gel permeation chromatography relative to a polystyrene standard, and the polydispersity index was between 1.9 and 2.5. The glass-transition temperatures of the resulting polyimides ranged from 213 to 325 °C, as measured by differential scanning calorimetry, and little weight loss was observed up to 450 °C in N2 by thermogravimetric analysis. These experimental data indicated that the tert -butyl pendent groups reduced the interactions among polymer chains to improve their solubility in organic solvents without the loss of thermal stability. Transparent and flexible films of these polyimides were obtained via casting from solution. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 229,234, 2002 [source] Synthesis and characterization of novel polyimide from bis-(3-aminophenyl)-4-(trifluoromethyl)phenyl phosphine oxideJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 19 2001Kwang Un Jeong Abstract A novel diamine, bis-(3-aminophenyl)-4-(trifluoromethyl)phenyl phosphine oxide (mDA3FPPO), containing phosphine oxide and fluorine moieties was prepared via the Grignard reaction from an intermediate, 4-(trifluoromethyl)phenyl diphenyl phosphine oxide, that was synthesized from diphenylphosphinic chloride and 4-(trifluoromethyl)bromobenzene, followed by nitration and reduction. The monomer was characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR, 19F NMR spectroscopies; elemental analysis; melting point measurements; and titration and was used to prepare polyimides with a number of dianhydrides such as pyromellitic dianhydride (PMDA), 5,5,-[2,2,2-trifluoro-1-(trifluoromethyl)ethyliden]-bis-1,3-isobenzofuranedione (6FDA), 3,3,,4,4,-benzophenone tetracarboxylic dianhydride (BTDA), and 4,4,-oxydiphthalic dianhydride (ODPA). Polyimides were synthesized via a conventional two-step route; preparation of polyamic acids, followed by solution imidization, and the molecular weight were controlled to 20,000 g/mol. Resulting polyimides were characterized by FTIR, NMR, DSC, and intrinsic viscosity measurements. Refractive-index, dielectric constant, and adhesive properties were also determined. The properties of polyimides were compared with those of polyimides prepared from 1,1-bis-(4-aminophenyl)-1-phenyl-2,2,2-trifluoroethane (3FDAm) and bis-(3-aminophenyl) phenyl phosphine oxide (mDAPPO). The polyimides prepared from mDA3FPPO provided high glass-transition temperatures (248,311 °C), good thermal stability, excellent solubility, low birefringence (0.0030,0.0036), low dielectric constants (2.9,3.1), and excellent adhesive properties with Cu foils (107 g/mm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3335,3347, 2001 [source] A Click Approach to Chiral-Dendronized Polyfluorene DerivativesMACROMOLECULAR RAPID COMMUNICATIONS, Issue 23 2007Zi-Tong Liu Abstract A new kind of chiral-dendronized binaphthyl-containing polyfluorene derivatives has been synthesized through "click chemistry" efficiently. The resulting copolymers exhibited desirable properties, such as excellent solubility, good thermal stability, and considerably high molecular weights. The photophysical properties of the copolymers were investigated in details, and the results indicated that the combination of chiral binaphthyl unit and bulky dendron could effectively suppress intermolecular packing and aggregation. In addition, the investigation of circular dichroism behavior of these chiral-dendronized copolymers showed a strong Cotton effect at long wavelength (373,379 nm), indicating that the chirality of the binaphthyl units was transferred to the whole polyfluorene backbone. [source] New organosoluble polyimides with low dielectric constants derived from bis[4-(2-trifluoromethyl-4-aminophenoxy)phenyl] diphenylmethyleneMACROMOLECULAR SYMPOSIA, Issue 1 2003Der-Jang Liaw Abstract A new kink diamine with trifluoromethyl group on either side, bis[4-(2-trifluoromethyl-4-aminophenoxy)phenyl]diphenylmethane(BTFAPDM), was reacted with various aromatic dianhydrides to prepare polyimides via poly (amic acid) precursors followed by thermal or chemical imidization. Polyimides were prepared using 3,3,, 4,4,-biphenyltetracarboxylic dianhydride(1), 4,4,-oxydiphthalic anhydride(2), 3,3,,4,4,-benzophenonetetracarboxylic dianhydride (3), 4,4,-sulfonyldiphthalic anhydride(4), and 4,4,-hexafluoroisopropylidene-diphathalic anhydride(5). The fluoro-polyimides exhibited low dielectric constants between 2.46 and 2.98, light color, and excellent high solubility. They exhibited glass transition temperatures between 227 and 253°C, and possessed a coefficient of thermal expansion (CTE) of 60-88 ppm/°C. Polymers PI-2, PI-3, PI-4, PI-5 showed excellent solubility in the organic solvents: N -methyl-2-pyrrolidinone (NMP), N,N -dimethylacetamide (DMAc), N,N -dimethylformamide (DMF), dimethyl sulfoxide (DMSO), pyridkie and tetrahydrofuran (THF). Inherent viscosity of the polyimides were found to range between 0.58 and 0.72 dLg-1. Thermogravimetric analysis of the polyimides revealed a high thermal stability decomposition temperature in excess of 500°C in nitrogen. Temperature at 10 % weight loss was found to be in the range 506-563°C and 498-557°C in nitrogen and air, respectively. The polyimide films had a tensile strength in the range 75-87 MPa; tensile modulus, 1.5-2.2 GPa; and elongation at break, 6-7%. [source] Facile synthesis and characterization of hyperbranched poly(aryl ether ketone)s obtained via an A2 + BB,2 approachPOLYMER INTERNATIONAL, Issue 10 2010Xiujie Li Abstract A fast and highly efficient approach for the synthesis of hyperbranched poly(aryl ether ketone)s (HPAEKs) via the polycondensation of A2 and BB,2 monomers is described. Commercially available hydroquinone (HQ, A2 monomer) and easily synthesized 2,4,,6-trifluorobenzophenone (TF, BB,2 monomer) were thermally polycondensed to prepared fluoro- or phenolic-terminated HPAEKs with K2CO3 and Na2CO3 as catalysts. During the reaction, the fluorine at the 4,-position of TF reacts rapidly with the phenolic group of HQ, forming predominantly dimers and some other species. The dimer can be considered as a new AB,2 monomer. Further reactions among molecules AB,2 and AB,2 with some other species result in the formation of HPAEKs. Fourier transform infrared and 1H NMR spectra revealed the structures of the resultant polymers. The degree of branching (DB) of the fluoro-terminated hyperbranched polymers was determined to be in the range 50,57% from 1H NMR spectra, whereas the DB of the phenolic-terminated hyperbranched polymers was determined to be 100%. These hyperbranched polymers exhibit excellent solubility in general organic solvents and possess moderate molecular weights with broad distributions determined using gel permeation chromatography. Moreover, the structure and performance of the HPAEKs can be conveniently regulated by adjusting the type and feed ratio of the two monomers. Copyright © 2010 Society of Chemical Industry [source] Synthesis and characterization of aromatic/cycloaliphatic poly(amide- imide-imide)s from bis(4-amino- 3,5-dimethylphenyl) cycloalkane derivativesPOLYMER INTERNATIONAL, Issue 8 2007Bhuvana Sowrirajalu Abstract A series of novel aromatic diamines containing cycloaliphatic moieties was synthesized by the reaction of cycloalkanones like cyclohexanone and cycloheptanone with 2,6-dimethylaniline. The tetrimide diacid was synthesized using the prepared diamine with 3,3,,4,4,-benzophenonetetracarboxylic acid dianhydride/pyromellitic dianhydride and p -aminobenzoic acid. The polymers were prepared by treating the tetrimide diacid with different aromatic diamines. The structures of the monomers and polymers were identified using elemental analysis and Fourier transform infrared, 1H NMR and 13C NMR spectroscopy. The polymers show excellent solubility. The polymers are amorphous and have high optical transparency. They also show good thermal stability and their Tg value is found to be in the range 268,305 °C. Copyright © 2007 Society of Chemical Industry [source] Synthesis and properties of new aromatic poly(ester-imide)s derived from 4- p -biphenyl-2,6-bis(4-trimellitimidophenyl) pyridine and various dihydroxy compoundsPOLYMER INTERNATIONAL, Issue 1 2007Hossein Behniafar Abstract A novel class of wholly aromatic poly(ester-imide)s, having a biphenylene pendant group, with inherent viscosities of 0.32,0.49 dL g,1 was prepared by the diphenylchlorophosphate-activated direct polyesterification of the preformed imide-ring-containing diacid, 4- p -biphenyl-2,6-bis(4-trimellitimidophenyl)pyridine (1) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A reference diacid, 2,6-bis(trimellitimido)pyridine (2) without a biphenylene pendant group and two phenylene rings in the backbone, was also synthesized for comparison purposes. At first, with due attention to structural similarity and to compare the characterization data, a model compound (3) was synthesized by the reaction of compound 1 with two mole equivalents of phenol. Moreover, the optimum condition of polymerization reactions was obtained via a study of the model compound synthesis. All of the resulting polymers were characterized by Fourier transform infrared and 1H NMR spectroscopy and elemental analysis. The ultraviolet ,max values of the poly(ester-imide)s were also determined. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, chloroform, tetrahydrofuran, and m -cresol, as well as in polar organic solvents, such as N -methyl-2-pyrrolidone, N,N -dimethylacetamide, N,N -dimethylformamide, and dimethyl sulfoxide. The crystalline nature of the polymers obtained was evaluated by means of wide-angle X-ray diffraction. The resulting poly(ester-imide)s showed nearly an amorphous nature, except poly(ester-imide) derived from 4,4,-dihydroxy biphenyl. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry thermograms were in the range 298,342 °C. The 10% weight loss temperatures (T10%) from thermogravimetric analysis curves were found to be in the range 433,471 °C in nitrogen. Films of the polymers were also prepared by casting the solutions. Copyright © 2006 Society of Chemical Industry [source] Novel Soluble Polyimide Containing 4- tert- Butyltoluene Moiety: Synthesis and CharacterizationCHINESE JOURNAL OF CHEMISTRY, Issue 11 2009Chenyi Wang Abstract Based on the synthesis of a rigid aromatic diamine, ,,, -bis(4-aminophenyl)-4-(t- butyl)toluene (1), a novel polyimide (PI) 3 was prepared from this diamine monomer and 4,4,-oxydiphthalic dianhydride via a one-step high-temperature polycondensation. FT-IR, 1H NMR and elemental analysis were used to investigate the chemical structures of 1 and 3. The results confirmed that they agreed with the proposed structures for both 1 and 3 completely. The obtained PI 3 showed excellent solubility in most common solvents such as N -methyl-2-pyrrolidinone, N,N -dimethylacetamide, N,N -dimethylformamide, chloroform, dichloromethane and tetrahydrofuran. The resulting strong and flexible film exhibited high thermal stability with the glass transition temperature at 317°C and the temperature at 10% weight loss beyond 519°C in both air and nitrogen atmospheres. Moreover, the film also showed high optical transparency, low dielectric constant (3.13 at 1 MHz), low water absorption (0.40%) and hydrophobic character. [source] |