Exhaustive Exercise (exhaustive + exercise)

Distribution by Scientific Domains


Selected Abstracts


Exercise Heat Stress does not Reduce Central Activation to non-exercised Human Skeletal Muscle

EXPERIMENTAL PHYSIOLOGY, Issue 6 2003
Julian Saboisky
In this study we measured the central activation ratio (CAR) of the leg extensors and the elbow flexor muscles before and after exhaustive exercise in the heat to determine whether exercise-induced hyperthermia affects the CNS drive to exercised (leg extensors) and/or non-exercised (forearm flexors) muscle groups. Thirteen subjects exercised at fixed intensities representative of a percentage of peak power output (PPO) for 10 min periods (50%, 40%, 60%, 50%) and then at 75% PPO until exhaustion in ambient conditions of 39.3 ± 0.8 °C and 60.0 ± 0.8% relative humidity. Before and immediately following exercise subjects performed a series of maximal voluntary contractions (MVCs) with the leg extensors (exercised muscles) and forearm flexors (non-exercised muscles). The degree of voluntary activation during the sustained MVCs was assessed by superimposing electrical stimulation to the femoral nerve and the biceps brachii. Exercise to exhaustion increased the rectal temperature from 37.2 ± 0.2 to 38.8 ± 0.2 °C (P < 0.0001). The mean heart rate at the end of exercise to exhaustion was 192 ± 3 beats min,1. Leg extensor voluntary force was significantly reduced from 595 ± 143 to 509 ± 105 N following exercise-induced hyperthermia but forearm flexor force was similar before and after exercise. The CAR of the leg extensors decreased from 94.2 ± 1.3% before exercise to 91.7 ± 1.5% (P < 0.02) following exercise-induced hyperthermia. However, the CAR for the forearm flexors remained at similar levels before and after exercise. The data suggest that the central nervous system selectively reduces central activation to specific skeletal muscles as a consequence of exercise-induced hyperthermia. [source]


Heat Shock Protein Expression is Increased in Cardiac and Skeletal Muscles of Fischer 344 Rats After Endurance Training

EXPERIMENTAL PHYSIOLOGY, Issue 1 2000
T. R. Samelman
Heat shock proteins (HSPs) are expressed when cells are exposed to various types of stress and they may provide protection against cellular insult. Previous data have shown increases in HSP expression following acute exhaustive exercise in rats (Locke et al. 1990, 1995; Salo et al. 1991) and humans (Liu et al. 1999); however, it is not known if chronic exercise will increase resting levels of HSPs. The purpose of this study was to determine if basal protein levels of HSP 72/73 and HSP 60 are increased in cardiac and skeletal muscle of endurance trained Fischer 344 rats. Heart, soleus (SOL) and lateral gastrocnemius (LG) muscles were removed and hearts were sectioned into left ventricle (LV), right ventricle (RV) and atria (AT). Endurance training improved myocardial citrate synthase activity by 88, 90 and 77% and cytochrome c oxidase activity by 58, 51 and 89% in LV, RV and AT, respectively. LV and RV oxidative enzyme activities were greater when compared to AT for both trained and untrained rats (P < 0.05). HSP 72/73 expression was significantly greater (P < 0.05) in LV, RV and SOL from endurance trained versus from control rats (26, 45 and 67%, respectively). HSP 60 was also increased (P < 0.05) in LV, RV and SOL in trained relative to untrained rats. HSP 72/73 and HSP 60 were unchanged in AT and LG after training. These results indicate that endurance training increases the basal expression of stress proteins and this observation is consistent with the hypothesis that endurance training may activate a protective mechanism to stress. [source]


Antimicrobial peptides and proteins, exercise and innate mucosal immunity

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 3 2006
Nicholas P. West
Abstract This review examines the question of whether exercise can be used as an experimental model to further our understanding of innate antimicrobial peptides and proteins (AMPs) and their role in susceptibility to infection at mucosal surfaces. There is strong evidence to suggest that AMPs, in combination with cellular and physical factors, play an important role in preventing infection. Although AMPs act directly on microorganisms, there is increasing recognition that they also exert their protective effect via immunomodulatory mechanisms, especially in noninflammatory conditions. Further studies that manipulate physiologically relevant concentrations of AMPs are required to shed light on the role they play in reducing susceptibility to infection. Evidence shows that in various form prolonged and/or exhaustive exercise is a potent modulator of the immune system, which can either sharpen or blunt the immune response to pathogens. The intensity and duration of exercise can be readily controlled in experimental settings to manipulate the degree of physical stress. This would allow for an investigation into a potential dose,response effect between exercise and AMPs. In addition, the use of controlled exercise could provide an experimental model by which to examine whether changes in the concentration of AMPs alters susceptibility to illness. [source]


Chronic effect of ferulic acid from Pseudosasa japonica leaves on enhancing exercise activity in mice

PHYTOTHERAPY RESEARCH, Issue 10 2010
Yanghee You
Abstract Ferulic acid derived from Pseudosasa japonica leaves, which possessed antioxidative potentials with DPPH- (54%) and ABTs- (65%) radical scavenging activities, and lipid-peroxidation inhibitory activity (71%), was orally administered to mice for 12 days in order to investigate its effects on exercise endurance capacity and alterations of antioxidant defense systems. Exhaustive swimming time was increased in the ferulic acid-supplemented group compared with the control group on days 6 and 12 (1.7- and 1.8-fold, respectively). When the mice were exhaustively exercised for 2 consecutive days, a high decrease (53%) was shown in the control group, but no change was found in the ferulic acid-treated group. The administration of ferulic acid significantly protected the depletion of enzymatic- and non enzymatic-antioxidants due to exhaustive exercise. Also, lipid-peroxidation levels decreased in the ferulic acid-treated group compared with the non exercised- and control-groups. These results suggest that ferulic acid from Pseudosasa japonica leaves has a chronic effect on endurance exercise capacity, which is attributed to its ability to ameliorate oxidative stress by improving antioxidant potentials. Copyright © 2010 John Wiley & Sons, Ltd. [source]