Evolutionary Origins (evolutionary + origins)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Vocalizations of Amazon River Dolphins, Inia geoffrensis: Insights into the Evolutionary Origins of Delphinid Whistles

ETHOLOGY, Issue 7 2002
Jeffrey Podos
Oceanic dolphins (Odontoceti: Delphinidae) produce tonal whistles, the structure and function of which have been fairly well characterized. Less is known about the evolutionary origins of delphinid whistles, including basic information about vocal structure in sister taxa such as the Platanistidae river dolphins. Here we characterize vocalizations of the Amazon River dolphin (Inia geoffrensis), for which whistles have been reported but not well documented. We studied Inia at the Mamirauá Sustainable Development Reserve in central Brazilian Amazônia. During 480 5-min blocks (over 5 weeks) we monitored and recorded vocalizations, noted group size and activity, and tallied frequencies of breathing and pre-diving surfaces. Overall, Inia vocal output correlated positively with pre-diving surfaces, suggesting that vocalizations are associated with feeding. Acoustic analyses revealed Inia vocalizations to be structurally distinct from typical delphinid whistles, including those of the delphinid Sotalia fluviatilis recorded at our field site. These data support the hypothesis that whistles are a recently derived vocalization unique to the Delphinidae. [source]


Book review: The Evolution of Thought: Evolutionary Origins of Great Ape Intelligence

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2007
Brian T. Shea
No abstract is available for this article. [source]


Evolutionary origins of the purinergic signalling system

ACTA PHYSIOLOGICA, Issue 4 2009
G. Burnstock
Abstract Purines appear to be the most primitive and widespread chemical messengers in the animal and plant kingdoms. The evidence for purinergic signalling in plants, invertebrates and lower vertebrates is reviewed. Much is based on pharmacological studies, but important recent studies have utilized the techniques of molecular biology and receptors have been cloned and characterized in primitive invertebrates, including the social amoeba Dictyostelium and the platyhelminth Schistosoma, as well as the green algae Ostreococcus, which resemble P2X receptors identified in mammals. This suggests that contrary to earlier speculations, P2X ion channel receptors appeared early in evolution, while G protein-coupled P1 and P2Y receptors were introduced either at the same time or perhaps even later. The absence of gene coding for P2X receptors in some animal groups [e.g. in some insects, roundworms (Caenorhabditis elegans) and the plant Arabidopsis] in contrast to the potent pharmacological actions of nucleotides in the same species, suggests that novel receptors are still to be discovered. [source]


Fireflies with or without prespermatophores: Evolutionary origins and life-history consequences

ENTOMOLOGICAL SCIENCE, Issue 1 2003
Fumio Hayashi
Abstract During mating, some male North American fireflies produce spermatophores from prespermatophores in their paired reproductive accessory glands. Other species of fireflies have neither prespermatophores nor spermatophores. To establish a pattern of spermatophore occurrence across firefly species, we examined the male internal reproductive system in 20 Japanese species belonging to 10 genera for the presence or absence of prespermatophores. Twelve species from seven genera produced prespermatophores, while eight species from three genera did not. Superimposed on a molecular phylogeny of Japanese fireflies based on mitochondrial 16S ribosomal DNA sequences, the basal group was prespermatophore producers. Prespermatophores appear to have been lost in two different lineages. Species without prespermatophores are characterized by degeneration of both the forewings and hindwings, and by body gigantism in females. [source]


Evolutionary origins of invasive populations

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 3 2008
Carol Eunmi Lee
Abstract What factors shape the evolution of invasive populations? Recent theoretical and empirical studies suggest that an evolutionary history of disturbance might be an important factor. This perspective presents hypotheses regarding the impact of disturbance on the evolution of invasive populations, based on a synthesis of the existing literature. Disturbance might select for life-history traits that are favorable for colonizing novel habitats, such as rapid population growth and persistence. Theoretical results suggest that disturbance in the form of fluctuating environments might select for organismal flexibility, or alternatively, the evolution of evolvability. Rapidly fluctuating environments might favor organismal flexibility, such as broad tolerance or plasticity. Alternatively, longer fluctuations or environmental stress might lead to the evolution of evolvability by acting on features of the mutation matrix. Once genetic variance is generated via mutations, temporally fluctuating selection across generations might promote the accumulation and maintenance of genetic variation. Deeper insights into how disturbance in native habitats affects evolutionary and physiological responses of populations would give us greater capacity to predict the populations that are most likely to tolerate or adapt to novel environments during habitat invasions. Moreover, we would gain fundamental insights into the evolutionary origins of invasive populations. [source]


Patterns and causes of species richness: a general simulation model for macroecology

ECOLOGY LETTERS, Issue 9 2009
Nicholas J. Gotelli
Abstract Understanding the causes of spatial variation in species richness is a major research focus of biogeography and macroecology. Gridded environmental data and species richness maps have been used in increasingly sophisticated curve-fitting analyses, but these methods have not brought us much closer to a mechanistic understanding of the patterns. During the past two decades, macroecologists have successfully addressed technical problems posed by spatial autocorrelation, intercorrelation of predictor variables and non-linearity. However, curve-fitting approaches are problematic because most theoretical models in macroecology do not make quantitative predictions, and they do not incorporate interactions among multiple forces. As an alternative, we propose a mechanistic modelling approach. We describe computer simulation models of the stochastic origin, spread, and extinction of species' geographical ranges in an environmentally heterogeneous, gridded domain and describe progress to date regarding their implementation. The output from such a general simulation model (GSM) would, at a minimum, consist of the simulated distribution of species ranges on a map, yielding the predicted number of species in each grid cell of the domain. In contrast to curve-fitting analysis, simulation modelling explicitly incorporates the processes believed to be affecting the geographical ranges of species and generates a number of quantitative predictions that can be compared to empirical patterns. We describe three of the ,control knobs' for a GSM that specify simple rules for dispersal, evolutionary origins and environmental gradients. Binary combinations of different knob settings correspond to eight distinct simulation models, five of which are already represented in the literature of macroecology. The output from such a GSM will include the predicted species richness per grid cell, the range size frequency distribution, the simulated phylogeny and simulated geographical ranges of the component species, all of which can be compared to empirical patterns. Challenges to the development of the GSM include the measurement of goodness of fit (GOF) between observed data and model predictions, as well as the estimation, optimization and interpretation of the model parameters. The simulation approach offers new insights into the origin and maintenance of species richness patterns, and may provide a common framework for investigating the effects of contemporary climate, evolutionary history and geometric constraints on global biodiversity gradients. With further development, the GSM has the potential to provide a conceptual bridge between macroecology and historical biogeography. [source]


Vocalizations of Amazon River Dolphins, Inia geoffrensis: Insights into the Evolutionary Origins of Delphinid Whistles

ETHOLOGY, Issue 7 2002
Jeffrey Podos
Oceanic dolphins (Odontoceti: Delphinidae) produce tonal whistles, the structure and function of which have been fairly well characterized. Less is known about the evolutionary origins of delphinid whistles, including basic information about vocal structure in sister taxa such as the Platanistidae river dolphins. Here we characterize vocalizations of the Amazon River dolphin (Inia geoffrensis), for which whistles have been reported but not well documented. We studied Inia at the Mamirauá Sustainable Development Reserve in central Brazilian Amazônia. During 480 5-min blocks (over 5 weeks) we monitored and recorded vocalizations, noted group size and activity, and tallied frequencies of breathing and pre-diving surfaces. Overall, Inia vocal output correlated positively with pre-diving surfaces, suggesting that vocalizations are associated with feeding. Acoustic analyses revealed Inia vocalizations to be structurally distinct from typical delphinid whistles, including those of the delphinid Sotalia fluviatilis recorded at our field site. These data support the hypothesis that whistles are a recently derived vocalization unique to the Delphinidae. [source]


DIVERSITY IN THE WEAPONS OF SEXUAL SELECTION: HORN EVOLUTION IN THE BEETLE GENUS ONTHOPHAGUS (COLEOPTERA: SCARABAEIDAE)

EVOLUTION, Issue 5 2005
Douglas J. Emlen
Abstract Both ornaments and weapons of sexual selection frequently exhibit prolific interspecific diversity of form. Yet, most studies of this diversity have focused on ornaments involved with female mate choice, rather than on the weapons of male competition. With few exceptions, the mechanisms of divergence in weapon morphology remain largely unexplored. Here, we characterize the evolutionary radiation of one type of weapon: beetle horns. We use partial sequences from four nuclear and three mitochondrial genes to develop a phylogenetic hypothesis for a worldwide sample of 48 species from the dung beetle genus Onthophagus (Coleoptera: Scarabaeidae). We then use these data to test for multiple evolutionary origins of horns and to characterize the evolutionary radiation of horns. Although our limited sampling of one of the world's most species-rich genera almost certainly underestimates the number of evolutionary events, our phylogeny reveals prolific evolutionary lability of these exaggerated sexually selected weapons (more than 25 separate gains and losses of five different horn types). We discuss these results in the context of the natural history of these beetles and explore ways that sexual selection and ecology may have interacted to generate this extraordinary diversity of weapon morphology. [source]


Evolutionary origins of invasive populations

EVOLUTIONARY APPLICATIONS (ELECTRONIC), Issue 3 2008
Carol Eunmi Lee
Abstract What factors shape the evolution of invasive populations? Recent theoretical and empirical studies suggest that an evolutionary history of disturbance might be an important factor. This perspective presents hypotheses regarding the impact of disturbance on the evolution of invasive populations, based on a synthesis of the existing literature. Disturbance might select for life-history traits that are favorable for colonizing novel habitats, such as rapid population growth and persistence. Theoretical results suggest that disturbance in the form of fluctuating environments might select for organismal flexibility, or alternatively, the evolution of evolvability. Rapidly fluctuating environments might favor organismal flexibility, such as broad tolerance or plasticity. Alternatively, longer fluctuations or environmental stress might lead to the evolution of evolvability by acting on features of the mutation matrix. Once genetic variance is generated via mutations, temporally fluctuating selection across generations might promote the accumulation and maintenance of genetic variation. Deeper insights into how disturbance in native habitats affects evolutionary and physiological responses of populations would give us greater capacity to predict the populations that are most likely to tolerate or adapt to novel environments during habitat invasions. Moreover, we would gain fundamental insights into the evolutionary origins of invasive populations. [source]


Phylogenetic and structural analyses of the oxa1 family of protein translocases

FEMS MICROBIOLOGY LETTERS, Issue 2 2001
Ming-Ren Yen
Abstract Mitochondrial Oxa1p homologs have been shown to function in protein export and membrane insertion in bacteria, mitochondria and chloroplasts, but their mode of action, organismal distribution and evolutionary origins are poorly understood. All sequenced homologs of Oxa1p were retrieved from the databases and multiply aligned. All organisms with a fully sequenced genome possess at least one Oxa1p homolog showing that the family is truly ubiquitous. Most prokaryotes possess just one Oxa1p homolog, but several Gram-positive bacteria and one archaeon possess two, and eukaryotes may have as many as six. Although these proteins vary in length over a 5-fold range, they exhibit a common hydrophobic core region of about 200 residues. Multiple sequence alignments reveal conserved residues and provide the basis for structural and phylogenetic analyses that serve to characterize the Oxa1 family. [source]


Genetic dissection of thymus development in mouse and zebrafish

IMMUNOLOGICAL REVIEWS, Issue 1 2003
Thomas Boehm
Summary:, Lymphoid organs represent a specialized microenvironment for interaction of stromal and lymphoid cells. In primary lymphoid organs, these interactions are required to establish a self-tolerant repertoire of lymphocytes. While detailed information is available about the genes that control lymphocyte differentiation, little is known about the genes that direct the establishment and differentiation of principal components of such microenvironments. Here, we discuss genetic studies addressing the role of thymic epithelial cells (TECs) during thymopoiesis. We have identifed an evolutionarily conserved key regulator of TEC differentiation, Foxn1, that is required for the immigration of prothymocytes into the thymic primordium. Because Foxn1 specifies the prospective endodermal domain that gives rise to thymic epithelial cells, it can be used to identify the evolutionary origins of this specialized cell type. In the course of these studies, we have found that early steps of thymus development in zebrafish are very similar to those in mice. Subsequently, we have used chemical mutagenesis to derive zebrafish lines with aberrant thymus development. Strengths and weaknesses of mouse and zebrafish models are largely complementary such that genetic analysis of mouse and zebrafish mutants may lead to a better understanding of thymus development. [source]


Occurrence and life history correlates of vocal duetting in North American passerines

JOURNAL OF AVIAN BIOLOGY, Issue 1 2008
Lauryn Benedict
Vocal duetting, where two birds produce temporally coordinated vocalizations, has been reported in a taxonomically and geographically diverse set of avian species. Researchers have suggested a number of potential correlates of duetting, including long term monogamy, year-round territory defense and sexual plumage monomorphism. Because the majority of duetting species are tropical, they have been the focus of the most comprehensive studies to date. There is, therefore, a real need for data regarding avian duets in temperate species. I used the recently completed Birds of North America species reports to examine the frequency, evolutionary origins and potential life history correlates of duetting behavior in North American passerines. "Duetting" behavior was reported in 7% of species from 12 avian families, likely representing 17 separate evolutionary origins. Duetting species showed apparent long term monogamy and year-round territoriality at frequencies more than double those of non-duetting passerines: 65% of duetting species were long term monogamous, compared to 27% of non-duetting species, and 50% of duetting species defended the same territory throughout the year, compared with only 11% of non-duetting species. Duetting and non-duetting species showed statistically indistinguishable frequencies of sexual plumage monomorphism. Comparative analyses of duetting species and their sister taxa revealed that the shift to duetting is accompanied by a gain of long term monogamy and year-round territoriality more often than it is associated with a loss of those traits. This study provides intriguing summary evidence that selective factors promoting duetting may be associated with a sedentary, monogamous lifestyle, and may operate similarly across taxonomic groups. Furthermore, vocal duetting may be considerably more common among temperate-zone species than previously recognized. [source]


The lissamphibian humerus and elbow joint, and the origins of modern amphibians

JOURNAL OF MORPHOLOGY, Issue 12 2009
Trond Sigurdsen
Abstract The origins and evolution of the three major clades of modern amphibians are still a source of controversy, and no general consensus exists as to their relationship to the various known Paleozoic taxa. This may indicate that additional character complexes should be studied to resolve their phylogenetic relationship. The salamander elbow joint has been fundamentally misinterpreted in previous morphological descriptions. In caudates and anurans, both the radius and ulna (fused in anurans) articulate with the characteristically large capitulum (radial condyle), although part of the ulnar articulating surface fits into to the smooth trochlear region. The salamander "ulnar condyle" of previous descriptions is in fact the entepicondyle. The condition seen in batrachians (i.e., salamanders and frogs) may be a lissamphibian synapomorphy because the elbow region of the primitive fossil caecilian Eocaecilia resembles those of frogs and salamanders. In addition to the large and bulbous capitulum, all lissamphibian humeri lack an entepicondylar foramen, and possess a distally pointing entepicondyle, a low and rounded ectepicondyle, and an elongated shaft. These characters are identified in key fossil forms to assess the support for the different hypotheses proposed for the evolutionary origins of lissamphibians. Temnospondyli is the only group of early tetrapods that shows a progressive evolution of lissamphibian traits in the humerus and elbow joint. Furthermore, among Paleozoic taxa, the dissorophoid temnospondyl Doleserpeton annectens is the only taxon that has the full set of humeral features shared by all lissamphibians. These results add support for the theory of a monophyletic origin of lissamphibians from dissorophoidtemnospondyls. J. Morphol., 2009. © 2009 Wiley-Liss, Inc. [source]


A phylogenetic framework for wing pattern evolution in the mimetic Mocker Swallowtail Papilio dardanus

MOLECULAR ECOLOGY, Issue 18 2009
REBECCA CLARK
Abstract The Batesian mimetic swallowtail butterfly Papilio dardanus exhibits numerous distinct wing colour morphs whose evolutionary origins require large phenotypic shifts. A phylogenetic framework to study the history of these morphs was established by DNA sequencing of representative subspecies from sub-Saharan Africa and Indian Ocean islands. Two mitochondrial genes and the nuclear internal transcribed spacer marker revealed deeply separated eastern and western African mainland lineages, plus one lineage each on Madagascar and Grande Comore. These markers showed very little polymorphism within lineages. In contrast, markers genetically linked to the mimicry locus H, including the transcription factor invected and two adjacent amplified fragment length polymorphisms-derived sequences, showed high nucleotide diversity but were not geographically structured. Variation in the unlinked wingless gene showed a similar pattern, rejecting the hypothesis that high level of variation in the H region is due to balancing selection exerted by the phenotypes. The separation from a common ancestor with Papilio phorcas estimated at 2.9 Ma coincides with the origin of a mimicry model, Danaus chrysippus. However, the model reached Africa only at the time of the internal splits of P. dardanus mtDNA groups, here estimated at 0.55,0.94 Ma. The nuclear genome shows less geographic structure and may not track recent population differentiation, suggesting that widespread mimicry morphs have arisen early in the evolution of the P. dardanus lineage, although after the male,female dimorphism which is ancestral. The current wide distribution of P. dardanus and population subdivision evident from mtDNA may have been achieved only with the spread of the models across Africa. [source]


Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes

NEW PHYTOLOGIST, Issue 1 2010
Gurvan Michel
Summary ,Brown algae exhibit a unique carbon (C) storage metabolism. The photoassimilate d -fructose 6-phosphate is not used to produce sucrose but is converted into d -mannitol. These seaweeds also store C as ,-1,3-glucan (laminarin), thus markedly departing from most living organisms, which use ,-1,4-glucans (glycogen or starch). ,Using a combination of bioinformatic and phylogenetic approaches, we identified the candidate genes for the enzymes involved in C storage in the genome of the brown alga Ectocarpus siliculosus and traced their evolutionary origins. ,Ectocarpus possesses a complete set of enzymes for synthesis of mannitol, laminarin and trehalose. By contrast, the pathways for sucrose, starch and glycogen are completely absent. ,The synthesis of ,-1,3-glucans appears to be a very ancient eukaryotic pathway. Brown algae inherited the trehalose pathway from the red algal progenitor of phaeoplasts, while the mannitol pathway was acquired by lateral gene transfer from Actinobacteria. The starch metabolism of the red algal endosymbiont was entirely lost in the ancestor of Stramenopiles. In light of these novel findings we question the validity of the ,Chromalveolate hypothesis'. [source]


Contributions of A. Roberto Frisancho to human population biology: An introduction,

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 5 2009
William R. Leonard
Over the span of his career, A. Roberto Frisancho has been one of the prime architects of the development and expansion of human population biology. His research and scholarly publications have helped to move the field beyond simple descriptions of human variation to address the nature and evolutionary origins of human biological diversity. Frisancho's early work in the Peruvian Andes elegantly demonstrated the importance of developmental acclimatization for promoting adaptive responses to the multiple stressors of high-altitude environments. Since mid-1970s, he has played a major role in developing and expanding the use of anthropometric techniques for assessing physical growth and nutritional status. Frisancho's influential publications have helped to make the use of anthropometric methods commonplace in the fields of nutritional science and public health. Throughout his career, Frisancho's work has examined how environmental, genetic, and developmental factors interact to influence human health and nutritional status. His research has addressed topics ranging from the determinants of low-birth weight infants in teenage mothers to the origins of obesity and associated metabolic diseases in populations of the developing world. Both the breadth and impact of Frisancho's work have been truly remarkable. The field of human population biology owes much to the tremendous contributions of A. Roberto Frisancho. Am. J. Hum. Biol., 2009. © 2009 Wiley-Liss, Inc. [source]


Brief communication: Locomotor limb preferences in captive chimpanzees (Pan troglodytes): Implications for morphological asymmetries in limb bones

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2008
William D. Hopkins
Abstract Understanding the evolutionary origins of hemispheric specialization remains a topic of considerable interest in a variety of scientific disciplines. Whether nonhuman primates exhibit population-level limb preferences continues to be a controversial topic. In this study, limb preferences for ascending and descending locomotion were assessed as a means of examining the hypothesis that asymmetries in forelimb bones might be attributed to asymmetries in posture. The results indicated that captive chimpanzees showed a population-level leftward asymmetry in descending locomotion but no group bias for ascending locomotion. The results are consistent with previous behavioral studies in captive chimpanzees as well as studies on skeletal asymmetries of the forelimbs of chimpanzees. Am J Phys Anthropol, 2008. © 2008 Wiley-Liss, Inc. [source]


From cofactor to enzymes.

THE CHEMICAL RECORD, Issue 6 2001
-phosphate-dependent enzymes, The molecular evolution of pyridoxal-
Abstract The pyridoxal-5,-phosphate (vitamin B6)-dependent enzymes that act on amino acid substrates have multiple evolutionary origins. Thus, the common mechanistic features of B6 enzymes are not accidental historical traits but reflect evolutionary or chemical necessities. The B6 enzymes belong to four independent evolutionary lineages of paralogous proteins, of which the , family (with aspartate aminotransferase as the prototype enzyme) is by far the largest and most diverse. The considerably smaller , family (tryptophan synthase , as the prototype enzyme) is structurally and functionally more homogenous. Both the D -alanine aminotransferase family and the alanine racemase family consist of only a few enzymes. The primordial pyridoxal-5,-phosphate-dependent protein catalysts apparently first diverged into reaction-specific protoenzymes, which then diverged further by specializing for substrate specificity. Aminotransferases as well as amino acid decarboxylases are found in two different evolutionary lineages, providing examples of convergent enzyme evolution. The functional specialization of most B6 enzymes seems to have already occurred in the universal ancestor cell before the divergence of eukaryotes, archebacteria, and eubacteria 1500 million years ago. Pyridoxal-5,-phosphate must have emerged very early in biological evolution; conceivably, metal ions and organic cofactors were the first biological catalysts. To simulate particular steps of molecular evolution, both the substrate and reaction specificity of existent B6 enzymes were changed by substitution of active-site residues, and monoclonal pyridoxal-5,-phosphate-dependent catalytic antibodies were produced with selection criteria that might have been operative in the evolution of protein-assisted pyridoxal catalysis. © 2001 John Wiley & Sons, Inc. and The Japan Chemical Journal Forum Chem Rec 1:436,447, 2001 [source]


Laterality in hand use across four tool-use behaviors among the wild chimpanzees of Bossou, Guinea, West Africa

AMERICAN JOURNAL OF PRIMATOLOGY, Issue 1 2009
Tatyana Humle
Abstract Population-level right handedness is a human universal, whose evolutionary origins are the source of considerable empirical and theoretical debate. Although our closest neighbor, the chimpanzee, shows some evidence for population-level handedness in captivity, there is little evidence from the wild. Tool-use measures of hand use in chimpanzees have yielded a great deal of variation in directionality and strength in hand preference, which still remains largely unexplored and unexplained. Data on five measures of hand use across four tool-use skills,ant-dipping, algae-scooping, pestle-pounding and nut-cracking,among the wild chimpanzees of Bossou, Guinea, West Africa, are presented here. This study aims to explore age- and sex-class effects, as well as the influence of task motor, cognitive and haptic demands, on the strength and directionality of hand preference within and across all five measures of hand use. Although there was no age- or sex-class effect on the directionality of hand preference, immature ,10 years old tended to be less lateralized than adults, especially adult females. Nut-cracking, the most cognitively complex of the four behaviors and the only one requiring complementary coordination of both hands, yielded the greatest strength in hand use with all adults expressing exclusive use of one hand over the other, without overall significant directional preference. The least lateralized behavior was pestle-pounding, which required bimanual coordination, but also imposed constraints owing to fatigue. It emerged that only the most hazardous tool use, i.e. ant-dipping, and the sole haptic task, i.e. the extraction by hand of crushed oil-palm heart, were laterally biased and both to the right. Shared motor or grip patterns in tool-use skills failed to reveal any specialization in hand use at the individual level. Finally, Bossou chimpanzees demonstrated a tendency for a population-level right-hand use. Am. J. Primatol. 71:40,48, 2009. © 2008 Wiley-Liss, Inc. [source]


Thermal shock and germination in North-West European Genisteae: implications for heathland management and invasive weed control using fire

APPLIED VEGETATION SCIENCE, Issue 3 2009
M.E. Hanley
Abstract Question: Is the stimulation of germination by thermal shock (resulting from the passage of fire) commonly observed for Mediterranean-climate Fabaceae also apparent for NW European Genisteae (Fabaceae) species? Location: Southern England and NW France. Methods: The germination of Cytisus scopiarius, Genista anglica, Ulex europaeus, Ulex gallii and Ulex minor was examined following exposure to a range of temperatures (50°C, 65°C, 80°C, 95°C and 110°C) applied to seeds for 5 min. A sixth Mediterranean-origin species (Spartium junceum) was also included since it is a common invasive in NW Europe and North America. Results: All five native NW European species displayed increased germination following thermal shock, even when seeds were heated to 110°C. However, there was some variation depending on provenance: in contrast to seeds collected from southern England, germination of French C. scopiarius seeds was unaffected by temperature. Spartium junceum germinated most at 95°C, but was the only species to show reduced germination when seeds were heated to 110°C. Conclusions: The NW European Genisteae appear to be pre-adapted to the high temperatures associated with fire; a response attributable to their evolutionary origins in the fire-prone ecosystems of the Mediterranean Basin. Consequently, projected increases in fire frequency linked to climate change may stimulate their regeneration in NW European heathlands, potentially altering the species composition of these ecosystems. Additionally, a clearer understanding of the interaction between thermal shock and germination may explain why fire has so frequently been ineffective in controlling invasive Genisteae populations worldwide. [source]


Endosymbiotic origins of sex

BIOESSAYS, Issue 5 2004
Christopher Bazinet
Understanding how complex sexual reproduction arose, and why sexual organisms have been more successful than otherwise similar asexual organisms, is a longstanding problem in evolutionary biology. Within this problem, the potential role of endosymbionts or intracellular pathogens in mediating primitive genetic transfers is a continuing theme. In recent years, several remarkable activities of mitochondria have been observed in the germline cells of complex eukaryotes, and it has been found that bacterial endosymbionts related to mitochondria are capable of manipulating diverse aspects of metazoan gametogenesis. An attempt is made here to rationalize these observations with an endosymbiotic model for the evolutionary origins of sex. It is hypothesized that the contemporary life cycle of germline cells has descended from the life cycle of the endosymbiotic ancestor of the mitochondrion. Through an actin-based motility that drove it from one cell to another, the rickettsial ancestor of mitochondria may have functioned as a primitive transducing particle, the evolutionary progenitor of sperm. BioEssays 26:558,566, 2004. © 2004 Wiley Periodicals, Inc. [source]


The evolution of bipedal postures in varanoid lizards

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 3 2009
GORDON W. SCHUETT
The bipedal posture (BP) and gait of humans are unique evolutionary hallmarks, but similar stances and forms of locomotion have had enormous influences on a range of phylogenetically diverse tetrapods, particularly dinosaurs and birds, and a range of mammalian lineages, including non-human apes. The complex movements involved in bipedalism appear to have modest evolutionary origins, and it is presumed that a stable and erect posture is a prerequisite for erect strides and other bipedal movements. Facultative bipedalism in several lineages of lizards is achieved by running, but some varanid lizards (genus Varanus) exhibit BPs without running. In these cases, BPs (BPstanding) are not used as a form of locomotion; rather, BPstanding is associated with defensive displays, and such postures also probably permit better inspection of the environment. Yet, in other varanids, BPs have been observed only during combat episodes (BPcombat), where both contestants rise together and embrace in the so-called clinch phase. Numerous other species, however, show neither type of BP. Past researchers have commented that only large-bodied varanids exhibit BP, a behaviour that appears to show phylogenetic trends. We termed this idea the King,Green,Pianka (KGP) bipedal hypothesis. In this article, we address two main questions derived from the KGP hypothesis. First, what is the phylogenetic distribution of BP in Varanus and close relatives (varanoids)? Second, is BP positively correlated with the phylogenetic distribution of large body size (e.g. snout,vent length, SVL)? In addition, we asked a related question: do the lengths of the femur and tail show body size-independent adaptive trends in association with BP? Because varanid species that show BPstanding also use these postures during combat (BPcombat), both types of BP were analysed collectively and simply termed BP. Using comparative phylogenetic analyses, the reconstruction of BP required three steps, involving a single gain and two losses. Specifically, BP was widespread in the monophyletic Varanus, and the single gain occurred at the most recent common ancestor of the African clade. The two losses of BP occurred in different clades (Indo-Asian B clade and Indo-Australian Odatria clade). BPs are absent in the sister group to Varanus (Lanthanotus borneensis) and the other outgroup species (Heloderma spp.). Our phylogenetic reconstruction supports the KGP prediction that BP is restricted to large-bodied taxa. Using the Hansen model of adaptive evolution on a limited, but highly relevant morphological dataset (i.e. SVL; femur length, FL; tail length, TL), we demonstrated that these characters were not equivalent in their contribution to the evolution of BP in Varanus. SVL was significantly correlated with BP when modelled in a phylogenetic context, but the model identified random processes as dominant over adaptive evolution, suggesting that a body size threshold might be involved in the evolution of BP. A Brownian motion (BM) model outperformed the selection model in our analysis of relative TL, suggesting that TL and BP evolved independently. The selection model for relative FL outperformed the BM model, indicating that FL and BP share an adaptive history. Our non-phylogenetic analyses involving regression residuals of FL and TL vs. SVL showed no significant correlation between these characters and BP. We suggest that BP in Varanus provides a convergent or analogue model from which to investigate various forms of bipedalism in tetrapod vertebrates, especially other reptiles, such as theropod dinosaurs. Because BPstanding in varanids is possibly an incipient stage to some form of upright locomotion, its inclusion as a general model in evolutionary analyses of bipedalism of vertebrates will probably provide novel and important insights. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 652,663. [source]


The origin of human pathogens: evaluating the role of agriculture and domestic animals in the evolution of human disease

BIOLOGICAL REVIEWS, Issue 3 2006
Jessica M. C. Pearce-Duvet
ABSTRACT Many significant diseases of human civilization are thought to have arisen concurrently with the advent of agriculture in human society. It has been hypothesised that the food produced by farming increased population sizes to allow the maintenance of virulent pathogens, i.e. civilization pathogens, while domestic animals provided sources of disease to humans. To determine the relationship between pathogens in humans and domestic animals, I examined phylogenetic data for several human pathogens that are commonly evolutionarily linked to domestic animals: measles, pertussis, smallpox, tuberculosis, taenid worms, and falciparal malaria. The majority are civilization pathogens, although I have included others whose evolutionary origins have traditionally been ascribed to domestic animals. The strongest evidence for a domestic-animal origin exists for measles and pertussis, although the data do not exclude a non-domestic origin. As for the other pathogens, the evidence currently available makes it difficult to determine if the domestic-origin hypothesis is supported or refuted; in fact, intriguing data for tuberculosis and taenid worms suggests that transmission may occur as easily from humans to domestic animals. These findings do not abrogate the importance of agriculture in disease transmission; rather, if anything, they suggest an alternative, more complex series of effects than previously elucidated. Rather than domestication, the broader force for human pathogen evolution could be ecological change, namely anthropogenic modification of the environment. This is supported by evidence that many current emerging infectious diseases are associated with human modification of the environment. Agriculture may have changed the transmission ecology of pre-existing human pathogens, increased the success of pre-existing pathogen vectors, resulted in novel interactions between humans and wildlife, and, through the domestication of animals, provided a stable conduit for human infection by wildlife diseases. [source]


The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses

CLADISTICS, Issue 6 2008
Jan M. Strugnell
Understanding how environmental forcing has generated and maintained large-scale patterns of biodiversity is a key goal of evolutionary research and critical to predicting the impacts of global climate change. We suggest that the initiation of the global thermohaline circulation provided a mechanism for the radiation of Southern Ocean fauna into the deep sea. We test this hypothesis using a relaxed phylogenetic approach to coestimate phylogeny and divergence times for a lineage of octopuses with Antarctic and deep-sea representatives. We show that the deep-sea lineage had their evolutionary origins in Antarctica, and estimate that this lineage diverged around 33 million years ago (Ma) and subsequently radiated at 15 Ma. Both of these dates are critical in development of the thermohaline circulation and we suggest that this has acted as an evolutionary driver enabling the Southern Ocean to become a centre of origin for deep-sea fauna. This is the first unequivocal molecular evidence that deep-sea fauna from other ocean basins originated from Southern Ocean taxa and this is the first evidence to be dated. © The Willi Hennig Society 2008. [source]