Evolutionary Context (evolutionary + context)

Distribution by Scientific Domains


Selected Abstracts


Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail

FUNCTIONAL ECOLOGY, Issue 5 2002
S. Lavorel
Summary 1The concept of plant functional type proposes that species can be grouped according to common responses to the environment and/or common effects on ecosystem processes. However, the knowledge of relationships between traits associated with the response of plants to environmental factors such as resources and disturbances (response traits), and traits that determine effects of plants on ecosystem functions (effect traits), such as biogeochemical cycling or propensity to disturbance, remains rudimentary. 2We present a framework using concepts and results from community ecology, ecosystem ecology and evolutionary biology to provide this linkage. Ecosystem functioning is the end result of the operation of multiple environmental filters in a hierarchy of scales which, by selecting individuals with appropriate responses, result in assemblages with varying trait composition. Functional linkages and trade-offs among traits, each of which relates to one or several processes, determine whether or not filtering by different factors gives a match, and whether ecosystem effects can be easily deduced from the knowledge of the filters. 3To illustrate this framework we analyse a set of key environmental factors and ecosystem processes. While traits associated with response to nutrient gradients strongly overlapped with those determining net primary production, little direct overlap was found between response to fire and flammability. 4We hypothesize that these patterns reflect general trends. Responses to resource availability would be determined by traits that are also involved in biogeochemical cycling, because both these responses and effects are driven by the trade-off between acquisition and conservation. On the other hand, regeneration and demographic traits associated with response to disturbance, which are known to have little connection with adult traits involved in plant ecophysiology, would be of little relevance to ecosystem processes. 5This framework is likely to be broadly applicable, although caution must be exercised to use trait linkages and trade-offs appropriate to the scale, environmental conditions and evolutionary context. It may direct the selection of plant functional types for vegetation models at a range of scales, and help with the design of experimental studies of relationships between plant diversity and ecosystem properties. [source]


Significance of Flavonoids in Plant Resistance and Enhancement of Their Biosynthesis

PLANT BIOLOGY, Issue 6 2005
D. Treutter
Abstract: The roles of flavonoids in plant defence against pathogens, herbivores, and environmental stress are reviewed and their significant contribution to plant resistance is discussed. The induction of flavonoids is of particular interest for gathering evidence of their roles. Tools are mentioned which may enhance flavonoid biosynthesis and accumulation. These include metabolic engineering and UV light. The induction of defence-related flavonoids is modified by other determining factors and competition between growth and secondary metabolism may exist. In an evolutionary context, stress-related oxidative pressure may have been a major trigger for the distribution and abundance of flavonoids. UV protection is one of their most significant, or even the most significant, functional role for flavonoids. The multi-functionality of these compounds, however, often complicates the interpretation of experimental results but, overall, it supports the importance of flavonoids. [source]


Gene function beyond the single trait: natural variation, gene effects, and evolutionary ecology in Arabidopsis thaliana

PLANT CELL & ENVIRONMENT, Issue 1 2005
S. J. TONSOR
ABSTRACT The purpose of plant functional genomics is to describe the patterns of gene expression and internal plant function underlying the ecological functions that sustain plant growth and reproduction. Plants function as integrated systems in which metabolic and developmental pathways draw on common resource pools and respond to a relatively small number of signal/response systems. Plants are also integrated with their environment, exchanging energy and matter with their surroundings and are consequently sensitive to changes in energy and resource fluxes. These two levels of integration complicate the description of gene function. Internal integration results in single genes often affecting multiple characteristics (pleiotropy) and interacting with multiple other genes (epistasis). Integration with the external environment leads to gene expression and the genes' phenotypic effects varying across environmental backgrounds (gene,environment interaction). An accurate description of the function of all genes requires an augmentation, already underway, of the study of isolated developmental and metabolic pathways to a more integrated approach involving the study of genetic effects across scales of variation usually regarded as the purview of ecological and evolutionary research. Since the evolution of gene function also depends on this complex of gene effects, progress in evolutionary genetics will also require understanding the nature of gene interactions and pleiotropy and the constraints and patterns they impose on adaptive evolution. Studying gene function in the context of the integrated organism is a major challenge, best met by developing co-ordinated research efforts in model systems. This review highlights natural variation in A. thaliana as a system for understanding integrated gene function in an ecological and evolutionary context. The current state of this research integration in A. thaliana is described by summarizing relevant approaches, current knowledge, and some potentially fruitful future studies. By introducing some of the fundamental questions of ecological and evolutionary research, experimental approaches and systems that can reveal new facets of gene function and gene effect are also described. A glossary is included in the Appendix. [source]


Functional significance of genetic variation underlying limb bone diaphyseal structure

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010
Ian J. Wallace
Abstract Limb bone diaphyseal structure is frequently used to infer hominin activity levels from skeletal remains, an approach based on the well-documented ability of bone to adjust to its loading environment during life. However, diaphyseal structure is also determined in part by genetic factors. This study investigates the possibility that genetic variation underlying diaphyseal structure is influenced by the activity levels of ancestral populations and might also have functional significance in an evolutionary context. We adopted an experimental evolution approach and tested for differences in femoral diaphyseal structure in 1-week-old mice from a line that had been artificially selected (45 generations) for high voluntary wheel running and non-selected controls. As adults, selected mice are significantly more active on wheels and in home cages, and have thicker diaphyses. Structural differences at 1 week can be assumed to primarily reflect the effects of selective breeding rather than direct mechanical stimuli, given that the onset of locomotion in mice is shortly after Day 7. We hypothesized that if genetically determined diaphyseal structure reflects the activity patterns of members of a lineage, then selected animals will have relatively larger diaphyseal dimensions at 1 week compared to controls. The results provide strong support for this hypothesis and suggest that limb bone cross sections may not always only reflect the activity levels of particular fossil individuals, but also convey an evolutionary signal providing information about hominin activity in the past. Am J Phys Anthropol 143:21,30, 2010. © 2010 Wiley-Liss, Inc. [source]


Brief communication: Dynamic plantar pressure distribution during locomotion in Japanese macaques (Macaca fuscata)

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010
Eishi Hirasaki
Abstract To better place the form and motion of the human foot in an evolutionary context, understanding how foot motions change when quadrupeds walk bipedally can be informative. For this purpose, we compared the pressures beneath the foot during bipedal and quadrupedal walking in Japanese macaques (Macaca fuscata). The pressure at nine plantar regions was recorded using a pressure mat (120 Hz), while the animals walked on a level walkway at their preferred speeds. The results revealed substantial differences in foot use between the two modes of locomotion, and some features observed during bipedal walking resembled human gait, such as the medial transfer of the center of pressure (COP), abrupt declines in forefoot pressures, and the increased pressure beneath the hallux, all occurring during the late-stance phase. In particular, the medial transfer of the COP, which is also observed in bonobos (Vereecke et al.: Am J Phys Anthropol 120 (2003) 373,383), was due to a biomechanical requirement for a hind limb dominant gait, such as bipedal walking. Features shared by bipedal and quadrupedal locomotion that were quite different from human locomotion were also observed: the heel never contacted the ground, a foot longitudinal arch was absent, the hallux was widely abducted, and the functional axis was on the third digit, not the second. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source]


Primate sociality in evolutionary context

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2005
Alexandra E. Müller
Abstract Much work has been done to further our understanding of the mechanisms that underlie the diversity of primate social organizations, but none has addressed the limits to that diversity or the question of what causes species to either form or not form social networks. The fact that all living primates typically live in social networks makes it highly likely that the last common ancestor of living primates already lived in social networks, and that sociality formed an integral part of the adaptive nature of primate origins. A characterization of primate sociality within the wider mammalian context is therefore essential to further our understanding of the adaptive nature of primate origins. Here we determine correlates of sociality and nonsociality in rodents as a model to infer causes of sociality in primates. We found sociality to be most strongly associated with large-bodied arboreal species that include a significant portion of fruit in their diet. Fruits and other plant products, such as flowers, seeds, and young leaves, are patchily distributed in time and space and are therefore difficult to find. These food resources are, however, predictable and dependable when their location is known. Hence, membership in a social unit can maximize food exploitation if information on feeding sites is shared. Whether sociality evolved in the primate stem lineage or whether it was already present earlier in the evolution of Euarchontoglires remains uncertain, although tentative evidence points to the former scenario. In either case, frugivory is likely to have played an important role in maintaining the presence of a social lifestyle throughout primate evolution. Am J Phys Anthropol, 2005. © 2005 Wiley-Liss, Inc. [source]


Molecular Characterization of Gregarines from Sand Flies (Diptera: Psychodidae) and Description of Psychodiella n. g. (Apicomplexa: Gregarinida)

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 6 2009
JAN VOTÝPKA
ABSTRACT. Sand fly and mosquito gregarines have been lumped for a long time in the single genus Ascogregarina and on the basis of their morphological characters and the lack of merogony been placed into the eugregarine family Lecudinidae. Phylogenetic analyses performed in this study clearly demonstrated paraphyly of the current genus Ascogregarina and revealed disparate phylogenetic positions of gregarines parasitizing mosquitoes and gregarines retrieved from sand flies. Therefore, we reclassified the genus Ascogregarina and created a new genus Psychodiella to accommodate gregarines from sand flies. The genus Psychodiella is distinguished from all other related gregarine genera by the characteristic localization of oocysts in accessory glands of female hosts, distinctive nucleotide sequences of the small subunit rDNA, and host specificity to flies belonging to the subfamily Phlebotominae. The genus comprises three described species: the type species for the new genus,Psychodiella chagasi (Adler and Mayrink 1961) n. comb., Psychodiella mackiei (Shortt and Swaminath 1927) n. comb., and Psychodiella saraviae (Ostrovska, Warburg, and Montoya-Lerma 1990) n. comb. Its creation is additionally supported by sequencing data from other gregarine species originating from the sand fly Phlebotomus sergenti. In the evolutionary context, both genera of gregarines from mosquitoes (Ascogregarina) and sand flies (Psychodiella) have a close relationship to neogregarines; the genera represent clades distinct from the other previously sequenced gregarines. [source]


Putting ,red alerts' in an ecological and evolutionary context

BIOESSAYS, Issue 9 2006
Marco Archetti
No abstract is available for this article. [source]


Haploid all the way: a new style of asexuality revealed in animals

BIOESSAYS, Issue 2 2002
Véronique Perrot
Weeks et al(1) recently reported that they had found a species of mites where the parthenogenetic females are haploid. They show that this is caused by intracellular bacteria that turn genetic haploid males into haploid females. I discuss these findings and attempt to place these observations in evolutionary context. BioEssays 24:114,118, 2002. © 2002 Wiley Periodicals, Inc. [source]


The economics of managerialism and the drive for efficiency in policing

MANAGERIAL AND DECISION ECONOMICS, Issue 8 2004
Leigh M. Drake
The UK has recently proposed to develop a set of criteria whereby the economic analysis of police force efficiency is to be made standard. This follows a strategy of aiming for improvement through managerialism and best value performance indicators, similar to those implemented by US police forces after the Government Performance and Results Act 1993. In this paper we attempt to put this recent development of efficiency targeting into a UK historical/evolutionary context and provide one of the first attempts to use data envelopment analysis to analyse the allocative, as well as technical efficiency, of police forces in England and Wales. Copyright © 2004 John Wiley & Sons, Ltd. [source]