European Range (european + range)

Distribution by Scientific Domains


Selected Abstracts


Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range

DIVERSITY AND DISTRIBUTIONS, Issue 1 2004
Gabi Jakobs
ABSTRACT Introduced plant species that became successful invaders appear often more vigorous and taller than their conspecifics in the native range. Reasons postulated to explain this better performance in the introduced range include more favourable environmental conditions and release from natural enemies and pathogens. According to the Evolution of Increased Competitive Ability hypothesis (EICA hypothesis) there is a trade-off between investment into defence against herbivores and pathogens, and investment into a stronger competitive ability. In this study, we conducted field surveys to investigate whether populations of the invasive perennial Solidago gigantea Ait (Asteraceae) differ with respect to growth and size in the native and introduced range, respectively. We assessed size and morphological variation of 46 populations in the native North American range and 45 populations in the introduced European range. Despite considerable variation between populations within continents, there were pronounced differences between continents. The average population size, density and total plant biomass were larger in European than in American populations. Climatic differences and latitude explained only a small proportion of the total variation between the two continents. The results show that introduced plants can be very distinct in their growth form and size from conspecifics in the native range. The apparently better performance of this invasive species in Europe may be the result of changed selection pressures, as implied by the EICA hypothesis. [source]


Voracious invader or benign feline?

FISH AND FISHERIES, Issue 3 2009
A review of the environmental biology of European catfish Silurus glanis in its native, introduced ranges
Abstract A popular species for food and sport, the European catfish (Silurus glanis) is well-studied in its native range, but little studied in its introduced range. Silurus glanis is the largest-bodied freshwater fish of Europe and is historically known to take a wide range of food items including human remains. As a result of its piscivorous diet, S. glanis is assumed to be an invasive fish species presenting a risk to native species and ecosystems. To assess the potential risks of S. glanis introductions, published and ,grey' literature on the species' environmental biology (but not aquaculture) was extensively reviewed. Silurus glanis appears well adapted to, and sufficiently robust for, translocation and introduction outside its native range. A nest-guarding species, S. glanis is long-lived, rather sedentary and produces relatively fewer eggs per body mass than many fish species. It appears to establish relatively easily, although more so in warmer (i.e. Mediterranean) than in northern countries (e.g. Belgium, UK). Telemetry data suggest that dispersal is linked to flooding/spates and human translation of the species. Potential impacts in its introduced European range include disease transmission, hybridization (in Greece with native endemic Aristotle's catfish [Silurus aristotelis]), predation on native species and possibly the modification of food web structure in some regions. However, S. glanis has also been reported (France, Spain, Turkmenistan) to prey intensively on other non-native species and in its native Germany to be a poor biomanipulation tool for top-down predation of zooplanktivorous fishes. As such, S. glanis is unlikely to exert trophic pressure on native fishes except in circumstances where other human impacts are already in force. In summary, virtually all aspects of the environmental biology of introduced S. glanis require further study to determine the potential risks of its introduction to novel environments. [source]


Costs and benefits of breeding in human-altered landscapes for the Eagle Owl Bubo bubo

IBIS, Issue 4 2002
Luigi Marchesi
We studied a population of 23,25 Eagle Owl Bubo bubo pairs between 1994 and 2000 in a 1330-km2 study plot in the central-eastern Italian Alps. Compared to random sites, territories were located at lower elevation and closer to intensively cultivated-urbanized valley floors. Early laying was associated with low elevation and negatively affected productivity. Diet was dominated by rats, hedgehogs and dormice (n = 978 prey items), all of them typical of low-elevation habitats. Higher productivity was associated with a higher proportion of rats in the diet of individual pairs. Low availability of rats resulted in a more diverse diet, in turn associated with low productivity. Territories were occupied every year in a non-random fashion, and those most occupied were characterized by higher productivity and higher occurrence of the favoured prey types in the diet, suggesting they were of superior quality. Eagle Owls also paid a cost associated with nesting near human-altered habitats: the main cause of mortality reported to local authorities was electrocution. This is an increasing cause of death for many European populations and may be a cause for conservation concern. Human persecution is also an important cause of mortality in some parts of the European range. Apart from such costs, the study population appeared to have adapted well to the proximity of humans: estimates of density and productivity were comparable to those recorded elsewhere in Europe. The pattern found in our population also held at higher spatial scales: data from 17 European populations showed density to be highest in low-elevation, human-altered landscapes. [source]


Biology and host specificity of Aulacobaris fallax (Coleoptera: Curculionidae), a potential biological control agent for dyer's woad, Isatis tinctoria (Brassicaceae) in North America

JOURNAL OF APPLIED ENTOMOLOGY, Issue 5 2009
E. Gerber
Abstract Dyer's woad, Isatis tinctoria, a plant of Eurasian origin is a problematic weed in western North America against which a classical biological weed control programme was initiated in 2004. Three European insect species were selected as candidate agents to control this invasive species, including the root-mining weevil Aulacobaris fallax. To determine its suitability as an agent, the biology and host specificity of A. fallax were studied in outdoor plots and in the field between 2004 and 2006 in its native European range. Aulacobaris fallax is a univoltine species that lays its eggs from March to August into leaf stalks and roots of dyer's woad. Larvae mine and pupate in the roots and adults emerge from August to October. Up to 62% of the dyer's woad plants at the field sites investigated were attacked by this weevil. In no-choice host-specificity tests, A. fallax attacked 16 out of 39 species and varieties within the Family Brassicaceae. Twelve of these are native to North America. In subsequent multiple-choice tests, seven species, all native to North America, suffered a similar level of attack as dyer's woad, while none of the European species were attacked. Our results demonstrate the importance of including test plant species that have not co-evolved with the respective candidate agent. In sum, we conclude that the risk of non-target effects is too high for A. fallax to be considered as a biological control agent for dyer's woad in the United States. [source]


Effect of generalist insect herbivores on introduced Lepidium draba (Brassicaceae): implications for the enemy release hypothesis

JOURNAL OF APPLIED ENTOMOLOGY, Issue 7 2008
K. P. Puliafico
Abstract The enemy release hypothesis (ERH) states that decreased regulation by natural enemies allows plants to increase in distribution, abundance and vigour following their introduction into an exotic range. Invasive plants rarely escape herbivory entirely, and for hoary cress [Lepidium draba L. (Brassicaceae)] it has been demonstrated that generalist insect abundance is greater in its introduced North American range than in the native European range. We assessed the role of increased generalist herbivory on hoary cress using representatives of four important herbivore niches commonly found in the introduced range. We experimentally examined the density dependent impact of these herbivores individually and in combination on hoary cress in a series of greenhouse experiments. We found that defoliation of the oligophagous diamondback moth Plutella xylostella (L.) (Lep., Plutellidae) had the strongest and most consistent impact, while damage by the stem-mining weevil Ceutorhynchus americanus Buchanan (Col., Curculionidae) tended to have the highest per capita effect. Plant response to feeding by the oligophagous crucifer flea beetle Phyllotreta cruciferae (Goeze) (Col., Chrysomelidae) was minor despite obvious feeding damage, and the impact of the polyphagous tarnished plant bug Lygus hesperus Knight (Het., Miridae) was negligible. In multiple-species experiments, herbivore impacts were usually additive. In general, we found that hoary cress can tolerate high densities of oligophagous insect herbivory and effectively resisted attack by the polyphagous L. hesperus, but also the oligophagous C. americanus. Our results indicate that a combination of plant resistance and tolerance allows hoary cress to withstand increased generalist herbivore load in its introduced range, consistent with the predictions of the ERH. [source]


ORIGINAL ARTICLE: Towards an understanding of the Holocene distribution of Fagus sylvatica L.

JOURNAL OF BIOGEOGRAPHY, Issue 1 2007
Thomas Giesecke
Abstract Aim, Understanding the driving forces and mechanisms of changes in past plant distribution and abundance will help assess the biological consequences of future climate change scenarios. The aim of this paper is to investigate whether modelled patterns of climate parameters 6000 years ago can account for the European distribution of Fagus sylvatica at that time. Consideration is also given to the role of non-climatic parameters as driving forces of the Holocene spread and population expansion of F. sylvatica. Location, Europe. Methods, European distributions were simulated using a physiologically-based bioclimatic model (STASH) driven by three different atmospheric general circulation model (AGCM) outputs for 6000 years ago. Results, The three simulations generally showed F. sylvatica to have potentially been as widespread 6000 years ago as it is today, which gives a profound mismatch with pollen-based reconstructions of the F. sylvatica distribution at that time. The results indicate that drier conditions during the growing season 6000 years ago could have caused a restriction of the range in the south. Poorer growth conditions with consequently reduced competitive ability were modelled for large parts of France. Main conclusions, Consideration of the entire European range of F. sylvatica showed that no single driving force could account for the observed distributional limits 6000 years ago, or the pattern of spread during the Holocene. Climatic factors, particularly drought during the growing season, are the likely major determinants of the potential range. Climatic factors are regionally moderated by competition, disturbance effects and the intrinsically slow rate of population increase of F. sylvatica. Dynamic vegetation modelling is needed to account for potentially important competitive interactions and their relationship with changing climate. We identify uncertainties in the climate and pollen data, as well as the bioclimatic model, which suggest that the current study does not identify whether or not climate determined the distribution of F. sylvatica 6000 years ago. Pollen data are better suited for comparison with relative abundance gradients rather than absolute distributional limits. These uncertainties from a study of the past, where we have information about plant distribution and abundance, argue for extreme caution in making forecasts for the future using equilibrium models. [source]


Morphological variability of the Asiatic cyprinid, topmouth gudgeon Pseudorasbora parva, in its introduced European range

JOURNAL OF FISH BIOLOGY, Issue 1 2009
E. Záhorská
To assess the spatial variability in external morphology of non-native populations of topmouth gudgeon Pseudorasbora parva within an ontogenetic context, triple regression analysis (distance-based measurements) was applied to data from eight European populations (two Slovak, four Romanian, one English and one French). The data from Slovakia were also subjected to geometrical analysis (co-ordinates-based measurements) to obtain a more complex picture of the species' overall morphology. Great phenotypic variability was observed, being expressed not only in the formation of different definite phenotypes but also in the manner by which the phenotypes are achieved. Thus, both the definite phenotype and the patterns of development in invasive P. parva may be highly influenced by environmental conditions. Such great morphological (phenotypic) variability is likely to be one of the attributes that make this species such a successful invader. [source]


Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation

MOLECULAR ECOLOGY, Issue 4 2001
T. L. King
Abstract Atlantic salmon (n = 1682) from 27 anadromous river populations and two nonanadromous strains ranging from south-central Maine, USA to northern Spain were genotyped at 12 microsatellite DNA loci. This suite of moderate to highly polymorphic loci revealed 266 alleles (5,37/locus) range-wide. Statistically significant allelic and genotypic heterogeneity was observed across loci between all but one pairwise comparison. Significant isolation by distance was found within and between North American and European populations, indicating reduced gene flow at all geographical scales examined. North American Atlantic salmon populations had fewer alleles, fewer unique alleles (though at a higher frequency) and a shallower phylogenetic structure than European Atlantic salmon populations. We believe these characteristics result from the differing glacial histories of the two continents, as the North American range of Atlantic salmon was glaciated more recently and more uniformly than the European range. Genotypic assignment tests based on maximum-likelihood provided 100% correct classification to continent of origin and averaged nearly 83% correct classification to province of origin across continents. This multilocus method, which may be enhanced with additional polymorphic loci, provides fishery managers the highest degree of correct assignment to management unit of any technique currently available. [source]


The spatial scale of adaptive population differentiation in a wide-spread, well-dispersed plant species

OIKOS, Issue 12 2008
Ute Becker
Adaptation to the specific conditions at different sites may contribute strongly to the wide distribution of a plant species. However, little is known about the scale at which such adaptation occurs in common species. We studied population differentiation, plasticity and local adaptation of the short-lived perennial Hypochoeris radicata, a widespread and common plant whose seeds are well-dispersed. We reciprocally transplanted seedlings among several populations of different size within and among three European regions (in the northwest Czech Republic, central Germany and the central Netherlands) and studied several fitness-related traits over two growing seasons. The region in which the reciprocal transplant experiment was carried out had no influence on the performance of seedlings, indicating that there were no differences in overall habitat quality. In contrast, the site within region, and the plot within site strongly influenced mean plant performance. Plants from different populations of origin differed in their performance, indicating genetic variation among populations, but performance strongly depended on the specific combination of population of origin and transplant site. Plants that grew at their home site produced on average almost twice the number of seeds per transplant (a multiplicative fitness measure) than foreign plants originating from other sites. Survival, rosette size and multiplicative fitness all decreased with increasing distance from the home site to the transplant site. The size of the population of origin did not influence overall plant performance or the strength of local adaptation. In conclusion, our results indicate that the common and widespread H. radicata consists of locally adapted genotypes within its European range at a relatively small scale. Thus a large potential for gene flow by seeds and a high density of populations do not appear to be sufficient to prevent population differentiation by selection. [source]


Phylogeography of Pulsatilla vernalis (L.) Mill. (Ranunculaceae): chloroplast DNA reveals two evolutionary lineages across central Europe and Scandinavia

JOURNAL OF BIOGEOGRAPHY, Issue 9 2008
Micha, Ronikier
Abstract Aim, The aim of this study was to test hypotheses regarding some of the main phylogeographical patterns proposed for European plants, in particular the locations of glacial refugia, the post-glacial colonization routes, and genetic affinities between southern (alpine) and northern (boreal) populations. Location, The mountains of Europe (Alps, Balkans, Carpathians, Central Massif, Pyrenees, Scandinavian chain, Sudetes), and central European/southern Scandinavian lowlands. Methods, As our model system we used Pulsatilla vernalis, a widely distributed European herbaceous plant occurring both in the high-mountain environments of the Alps and other European ranges and in lowlands north of these ranges up to Scandinavia. Based on a distribution-wide sampling of 61 populations, we estimated chloroplast DNA (cpDNA) variation along six regions using polymerase chain reaction,restriction fragment-length polymorphisms (PCR,RFLPs) (trnH,trnK, trnK,trnK, trnC,trnD, psbC,trnS, psaA,trnS, trnL,trnF) and further sequencing of trnL,trnF and trnH,psbA. In addition, 11 samples of other European species of Pulsatilla were sequenced to survey the genus-scale cpDNA variation. Results, Eleven PCR,RFLP polymorphisms were detected in P. vernalis, revealing seven haplotypes. They formed two distinct genetic groups. Three haplotypes representing both groups dominated and were widely distributed across Europe, whereas the others were restricted to localized regions (central Alps, Tatras/Sudetes mountains) or single populations. Sequencing analysis confirmed the reliability of PCR,RFLPs and homology of haplotypes across their distribution. The chloroplast DNA variation across the section Pulsatilla was low, but P. vernalis did not share haplotypes with other species. Main conclusions, The genetic distinctiveness of P. vernalis populations from the south-western Alps with respect to other Alpine populations, as well as the affinities between the former populations and those from the eastern Pyrenees, is demonstrated, thus providing support for the conclusions of previous studies. Glacial refugia in the Dolomites are also suggested. Isolation is inferred for the high-mountain populations from the Tatras and Sudetes; this is in contrast to the case for the Balkans, which harboured the common haplotype. Specific microsatellite variation indicates the occurrence of periglacial lowland refugia north of the Alps, acting as a source for the post-glacial colonization of Scandinavia. The presence of different fixed haplotypes in eastern and western Scandinavia, however, suggests independent post-glacial colonization of these two areas, with possible founder effects. [source]