European Pear (european + pear)

Distribution by Scientific Domains


Selected Abstracts


Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.)

MOLECULAR ECOLOGY RESOURCES, Issue 4 2006
F. FERNÁNDEZ-FERNÁNDEZ
Abstract This study reports the development and characterization of 19 microsatellite primer pairs developed from genomic DNA of European pear (Pyrus communis) and their transferability to other Pyrus and Malus material. The primers were designed from two different genomic libraries enriched for di- and trinucleotide repeats. When tested in six P. communis cultivars and 15 other Pyrus species, 13 primers revealed single-locus polymorphism and six showed more complex patterns that suggest multiple loci. Two to 18 alleles were detected per locus and two primer pairs were sufficient to discriminate all accessions. Transferability of nine primer pairs to Malus was demonstrated through amplification of discrete products in two accessions. [source]


Genotypic difference for the susceptibility of Japanese, Chinese and European pears to Venturia nashicola, the cause of scab on Asian pears

PLANT BREEDING, Issue 4 2008
K. Abe
Abstract Venturia nashicola, the cause of scab on Asian pears, is distinct from Venturia pirina, a causal fungus of European pear scab. Although scab caused by V. nashicola is one of the most serious diseases in the Japanese pear (Pyrus pyrifolia Nakai var. culta Nakai), information available regarding resistant breeding against V. nashicola is limited. In this study, 12 genotypes of Japanese pear, seven genotypes of Chinese pear (Pyrus ussuriensis Maxim.) and four genotypes of European pear (Pyrus communis L. var. sativa DC.) and/or their offspring were evaluated for susceptibility to V. nashicola with leaf and fruit inoculation tests. At 30,40 days after full bloom in their developmental stage, unfolded young leaves and fruit were inoculated with conidial suspensions of V. nashicola for each genotype, and the responses were rated at 30 days postinoculation for the inoculated leaves and at 42 days postinoculation for the inoculated fruits. No visible symptoms were found in European pear ,Bartlett' and ,La France' and their respective offspring ,290-36' and ,282-12', in the Japanese pear ,Kinchaku' and in the Chinese pears ,Cangxili' and ,Hongli'; these genotypes were evaluated as highly resistant to V. nashicola. Necrotic lesions without sporulation were observed in the Chinese pears ,Qiubaili', ,Manyuanxiang', ,Yuanbali' and ,Xiangyali', which were regarded as resistant. Sporulating lesions were formed on the other genotypes, such as the major Japanese pear cultivars ,Kosui' and ,Nijisseiki', which were regarded as susceptible. The response of inoculated leaves coincided well with that of inoculated fruit for each genotype. When the severity of scab symptoms on scab-susceptible genotypes was further rated with disease severity (DS) values, a genotypic difference was observed for overall DS values in a successive 2-year measurement among the susceptible genotypes. Based on the DS values of leaf and fruit scabs, the Japanese pears ,Niitaka', ,Shinko', ,Nijisseiki', ,Gold Nijisseiki', ,Osa Nijisseiki' and ,Shinsui' were considered to be less susceptible to V. nashicola than the typical susceptible cultivar ,Kosui'. [source]